BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27178797)

  • 21. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida.
    Huynh N; Aye A; Li Y; Yu H; Cao H; Tiwari VK; Shin DW; Chen X; Fisher AJ
    Biochemistry; 2013 Nov; 52(47):8570-9. PubMed ID: 24152047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic Synthesis of Sialic Acids in Microfluidics to Overcome Cross-Inhibitions and Substrate Supply Limitations.
    Obst F; Mertz M; Mehner PJ; Beck A; Castiglione K; Richter A; Voit B; Appelhans D
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49433-49444. PubMed ID: 34612033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vivo Multienzyme Complex Coconstruction of N-Acetylneuraminic Acid Lyase and N-Acetylglucosamine-2-epimerase for Biosynthesis of N-Acetylneuraminic Acid.
    Wang Z; Zhuang W; Cheng J; Sun W; Wu J; Chen Y; Ying H
    J Agric Food Chem; 2017 Aug; 65(34):7467-7475. PubMed ID: 28791861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate.
    Ringenberg MA; Steenbergen SM; Vimr ER
    Mol Microbiol; 2003 Nov; 50(3):961-75. PubMed ID: 14617154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epimerization via carbon-carbon bond cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class II aldolase.
    Johnson AE; Tanner ME
    Biochemistry; 1998 Apr; 37(16):5746-54. PubMed ID: 9548961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar.
    Fujiwara T; Saburi W; Inoue S; Mori H; Matsui H; Tanaka I; Yao M
    FEBS Lett; 2013 Apr; 587(7):840-6. PubMed ID: 23462136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst.
    Tao F; Zhang Y; Ma C; Xu P
    Sci Rep; 2011; 1():142. PubMed ID: 22355659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma.
    Wang SL; Li YL; Han Z; Chen X; Chen QJ; Wang Y; He LS
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29510563
    [No Abstract]   [Full Text] [Related]  

  • 29. Structure-guided saturation mutagenesis of N-acetylneuraminic acid lyase for the synthesis of sialic acid mimetics.
    Williams GJ; Woodhall T; Nelson A; Berry A
    Protein Eng Des Sel; 2005 May; 18(5):239-46. PubMed ID: 15897188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides.
    Kim JE; Kim YS; Kang LW; Oh DK
    Biotechnol Lett; 2012 Nov; 34(11):2061-8. PubMed ID: 22782272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of cysteine-380 as the essential residue for the human N-acetyl-D-glucosamine 2-epimerase (renin binding protein).
    Takahashi S; Takahashi K; Kaneko T; Ogasawara H; Shindo S; Saito K; Kobayashi M
    J Biochem; 1999 Oct; 126(4):639-42. PubMed ID: 10502668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase.
    Mahmoudian M; Noble D; Drake CS; Middleton RF; Montgomery DS; Piercey JE; Ramlakhan D; Todd M; Dawson MJ
    Enzyme Microb Technol; 1997 Apr; 20(5):393-400. PubMed ID: 9084208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity.
    Chen Q; Han L; Chen X; Cui Y; Feng J; Wu Q; Zhu D
    Enzyme Microb Technol; 2016 Oct; 92():99-106. PubMed ID: 27542750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM simulation, and mutagenesis.
    Daniels AD; Campeotto I; van der Kamp MW; Bolt AH; Trinh CH; Phillips SE; Pearson AR; Nelson A; Mulholland AJ; Berry A
    ACS Chem Biol; 2014 Apr; 9(4):1025-32. PubMed ID: 24521460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92.
    Ferrero MA; Martínez-Blanco H; Lopez-Velasco FF; Ezquerro-Sáenz C; Navasa N; Lozano S; Rodríguez-Aparicio LB
    Acta Biochim Pol; 2007; 54(2):387-99. PubMed ID: 17565386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins.
    Cheng CH; Lee WC
    Microb Cell Fact; 2010 Aug; 9():63. PubMed ID: 20799977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of functionally important cysteine residues of the human renin-binding protein as the enzyme N-acetyl-D-glucosamine 2-epimerase.
    Takahashi S; Takahashi K; Kaneko T; Ogasawara H; Shindo S; Saito K; Kawamura Y
    J Biochem; 2001 Apr; 129(4):529-35. PubMed ID: 11275551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elimination of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activity from human N-acetylneuraminic acid 9-phosphate synthase by a single mutation.
    Hao J; Vann WF; Hinderlich S; Sundaramoorthy M
    Biochem J; 2006 Jul; 397(1):195-201. PubMed ID: 16503877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid residues conferring the nucleotide binding properties of N-acetyl-D-glucosamine 2-epimerase (renin binding protein).
    Takahashi S; Ogasawara H; Hiwatashi K; Hata K; Hori K; Koizumi Y; Sugiyama T
    Biomed Res; 2005 Jun; 26(3):117-21. PubMed ID: 16011304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments.
    Effertz K; Hinderlich S; Reutter W
    J Biol Chem; 1999 Oct; 274(40):28771-8. PubMed ID: 10497249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.