BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 27178802)

  • 41. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2.
    Magherini F; Tani C; Gamberi T; Caselli A; Bianchi L; Bini L; Modesti A
    Proteomics; 2007 May; 7(9):1434-45. PubMed ID: 17469077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cerebral blood flow changes during cortical spreading depression are not altered by inhibition of nitric oxide synthesis.
    Zhang ZG; Chopp M; Maynard KI; Moskowitz MA
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):939-43. PubMed ID: 7523432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activity of ovarian nitric oxide synthase (NOs) during ovulatory process in the rat: relationship with prostaglandins (PGs) production.
    Faletti A; Pérez Martínez S; Perotti C; de Gimeno MA
    Nitric Oxide; 1999 Aug; 3(4):340-7. PubMed ID: 10444373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system.
    Pérez-Gallardo RV; Briones LS; Díaz-Pérez AL; Gutiérrez S; Rodríguez-Zavala JS; Campos-García J
    FEMS Yeast Res; 2013 Dec; 13(8):804-19. PubMed ID: 24028658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of intrinsic cavernous tone and nitric oxide production by arginase in rabbit corpus cavernosum.
    Masuda H; Yano M; Sakai Y; Kihara K; Yamauchi Y; Azuma H
    J Urol; 2004 Jan; 171(1):490-4. PubMed ID: 14665961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper.
    Melo RG; Leitão AC; Pádula M
    Yeast; 2004 Sep; 21(12):991-1003. PubMed ID: 15449310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP; Xing Y; Zhang JH
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advanced glycation end products induce death of retinal neurons via activation of nitric oxide synthase.
    Kobayashi T; Oku H; Komori A; Okuno T; Kojima S; Obayashi H; Sugiyama T; Hasegawa G; Fukui M; Nakamura N; Ikeda T
    Exp Eye Res; 2005 Dec; 81(6):647-54. PubMed ID: 15975578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening.
    Xu C; Yi C; Wang H; Bruce IC; Xia Q
    Shock; 2012 Jan; 37(1):110-5. PubMed ID: 21993446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats.
    Wang MX; Murrell DF; Szabo C; Warren RF; Sarris M; Murrell GA
    Nitric Oxide; 2001 Jun; 5(3):219-32. PubMed ID: 11384195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells.
    Xu M; Dong J
    Sci China C Life Sci; 2007 Dec; 50(6):799-807. PubMed ID: 17914641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide/platelet activating factor cross-talk in mesangial cells modulates the interaction with leukocytes.
    Bussolati B; Mariano F; Migliori M; Camussi G
    Kidney Int; 2002 Oct; 62(4):1322-31. PubMed ID: 12234302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of bradykinin on nitric oxide production, urea synthesis and viability of rat hepatocyte cultures.
    Sesti S; Martino G; Mazzulla S; Chimenti R
    BMC Physiol; 2005 Jan; 5(1):2. PubMed ID: 15670332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection system of the intracellular nitric oxide in yeast by HPLC with a fluorescence detector.
    Nasuno R; Shino S; Yoshikawa Y; Yoshioka N; Sato Y; Kamiya K; Takagi H
    Anal Biochem; 2020 Jun; 598():113707. PubMed ID: 32251648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The redox-sensing quinone reductase Lot6p acts as an inducer of yeast apoptosis.
    Sollner S; Durchschlag M; Fröhlich KU; Macheroux P
    FEMS Yeast Res; 2009 Sep; 9(6):885-91. PubMed ID: 19709309
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide signaling in yeast.
    Astuti RI; Nasuno R; Takagi H
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9483-9497. PubMed ID: 27722918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitric Oxide Signalling in Yeast.
    Astuti RI; Nasuno R; Takagi H
    Adv Microb Physiol; 2018; 72():29-63. PubMed ID: 29778216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and Functional Analysis of GTP Cyclohydrolase II in
    Nasuno R; Suzuki S; Oiki S; Hagiwara D; Takagi H
    Front Microbiol; 2022; 13():825121. PubMed ID: 35308400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atg32-dependent mitophagy sustains spermidine and nitric oxide required for heat-stress tolerance in Saccharomycescerevisiae.
    Kaur J; Goldsmith J; Tankka A; Bustamante Eguiguren S; Gimenez AA; Vick L; Debnath J; Vlahakis A
    J Cell Sci; 2021 Jun; 134(11):. PubMed ID: 34096604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat Stress-Induced Metabolic Remodeling in
    Pan D; Wiedemann N; Kammerer B
    Metabolites; 2019 Nov; 9(11):. PubMed ID: 31694329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.