BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27178904)

  • 1. Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).
    Ortega-Toro R; Santagata G; Gomez d'Ayala G; Cerruti P; Talens Oliag P; Chiralt Boix MA; Malinconico M
    Carbohydr Polym; 2016 Aug; 147():16-27. PubMed ID: 27178904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of thermoplastic starch final properties by blending with poly(ɛ-caprolactone).
    Ninago MD; López OV; Lencina MM; García MA; Andreucetti NA; Ciolino AE; Villar MA
    Carbohydr Polym; 2015 Dec; 134():205-12. PubMed ID: 26428117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.
    Akrami M; Ghasemi I; Azizi H; Karrabi M; Seyedabadi M
    Carbohydr Polym; 2016 Jun; 144():254-62. PubMed ID: 27083816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).
    Wei D; Wang H; Xiao H; Zheng A; Yang Y
    Carbohydr Polym; 2015 Jun; 123():275-82. PubMed ID: 25843859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of starch foams by twin-screw extrusion: effect of maleated poly(butylene adipate-co-terephthalate) as a compatibilizer.
    Nabar Y; Raquez JM; Dubois P; Narayan R
    Biomacromolecules; 2005; 6(2):807-17. PubMed ID: 15762645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer.
    Singh RP; Pandey JK; Rutot D; Degée P; Dubois P
    Carbohydr Res; 2003 Aug; 338(17):1759-69. PubMed ID: 12892943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding.
    Ortega-Toro R; Morey I; Talens P; Chiralt A
    Carbohydr Polym; 2015 Aug; 127():282-90. PubMed ID: 25965485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties.
    Xu C; Chen C; Wu D
    Carbohydr Polym; 2018 Feb; 182():115-122. PubMed ID: 29279105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.
    Sun Y; Hu Q; Qian J; Li T; Ma P; Shi D; Dong W; Chen M
    Carbohydr Polym; 2016 Mar; 139():28-34. PubMed ID: 26794943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend.
    Noivoil N; Yoksan R
    Int J Biol Macromol; 2020 Oct; 160():506-517. PubMed ID: 32464210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending.
    Hou AL; Qu JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-tough poly (l-lactide) materials: Reactive blending with maleic anhydride grafted starch and poly (ethylene glycol) diacrylate.
    Yang C; Zhou M; Lin Y; Cheng C; Cheng F; Liu W; Zhu P
    Int J Biol Macromol; 2019 Sep; 136():1069-1075. PubMed ID: 31229539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maleic Anhydride-Grafted PLA Preparation and Characteristics of Compatibilized PLA/PBSeT Blend Films.
    Jang H; Kwon S; Kim SJ; Park SI
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compatibility of Chitosan in Polymer Blends by Chemical Modification of Bio-based Polyesters.
    Vernaez O; Neubert KJ; Kopitzky R; Kabasci S
    Polymers (Basel); 2019 Nov; 11(12):. PubMed ID: 31775370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal properties and crystallization behavior of thermoplastic starch/poly(ɛ-caprolactone) composites.
    Cai J; Xiong Z; Zhou M; Tan J; Zeng F; Meihuma ; Lin S; Xiong H
    Carbohydr Polym; 2014 Feb; 102():746-54. PubMed ID: 24507343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties.
    Correa AC; Carmona VB; Simão JA; Capparelli Mattoso LH; Marconcini JM
    Carbohydr Polym; 2017 Jul; 167():177-184. PubMed ID: 28433152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications.
    Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P
    Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Almond Skin Waste and Glycidyl Methacrylate on Mechanical and Color Properties of Poly(ε-caprolactone)/Poly(lactic acid) Blends.
    Valdés A; Dominici F; Fortunati E; Kenny JM; Jiménez A; Garrigós MC
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity.
    Finotti PF; Costa LC; Capote TS; Scarel-Caminaga RM; Chinelatto MA
    J Mech Behav Biomed Mater; 2017 Apr; 68():155-162. PubMed ID: 28171812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.