These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 27178916)
1. Formation of nanoporous aerogels from wheat starch. Ubeyitogullari A; Ciftci ON Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916 [TBL] [Abstract][Full Text] [Related]
2. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying. Alavi F; Ciftci ON Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150 [TBL] [Abstract][Full Text] [Related]
3. In Vitro Digestibility of Nanoporous Wheat Starch Aerogels. Ubeyitogullari A; Brahma S; Rose DJ; Ciftci ON J Agric Food Chem; 2018 Sep; 66(36):9490-9497. PubMed ID: 30130963 [TBL] [Abstract][Full Text] [Related]
4. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. da Silva FT; de Oliveira JP; Fonseca LM; Bruni GP; da Rosa Zavareze E; Dias ARG Int J Biol Macromol; 2020 Jul; 155():6-13. PubMed ID: 32194107 [TBL] [Abstract][Full Text] [Related]
5. In vitro digestion of starch and protein aerogels generated from defatted rice bran via supercritical carbon dioxide drying. Kaur S; Ubeyitogullari A Food Chem; 2024 Oct; 455():139833. PubMed ID: 38833864 [TBL] [Abstract][Full Text] [Related]
6. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Veronovski A; Tkalec G; Knez Ž; Novak Z Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485 [TBL] [Abstract][Full Text] [Related]
7. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457 [TBL] [Abstract][Full Text] [Related]
8. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Druel L; Bardl R; Vorwerg W; Budtova T Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674 [TBL] [Abstract][Full Text] [Related]
9. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model. Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612 [TBL] [Abstract][Full Text] [Related]
10. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Alavi F; Ciftci ON Int J Biol Macromol; 2024 Apr; 264(Pt 1):129945. PubMed ID: 38311127 [TBL] [Abstract][Full Text] [Related]
11. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Starbird R; García-González CA; Smirnova I; Krautschneider WH; Bauhofer W Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():177-83. PubMed ID: 24582238 [TBL] [Abstract][Full Text] [Related]
13. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO Milovanovic S; Markovic D; Jankovic-Castvan I; Lukic I Carbohydr Polym; 2024 May; 331():121874. PubMed ID: 38388060 [TBL] [Abstract][Full Text] [Related]
14. In Vitro Bioaccessibility of Low-Crystallinity Phytosterol Nanoparticles Generated Using Nanoporous Starch Bioaerogels. Ubeyitogullari A; Moreau R; Rose DJ; Ciftci ON J Food Sci; 2019 Jul; 84(7):1812-1819. PubMed ID: 31218690 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Wang W; Fang Y; Ni X; Wu K; Wang Y; Jiang F; Riffat SB Carbohydr Polym; 2019 Nov; 224():115129. PubMed ID: 31472876 [TBL] [Abstract][Full Text] [Related]
17. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894 [TBL] [Abstract][Full Text] [Related]
18. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. Wu K; Fang Y; Wu H; Wan Y; Qian H; Jiang F; Chen S Int J Biol Macromol; 2021 Jan; 166():1499-1507. PubMed ID: 33181223 [TBL] [Abstract][Full Text] [Related]
19. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Zou F; Budtova T Carbohydr Polym; 2021 Mar; 255():117344. PubMed ID: 33436187 [TBL] [Abstract][Full Text] [Related]
20. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Alavi F; Ciftci ON Food Chem; 2024 Oct; 455():139468. PubMed ID: 38850979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]