These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27178958)
1. Fabrication of poly(vinyl alcohol)-Carrageenan scaffolds for cryopreservation: Effect of composition on cell viability. Chopra P; Nayak D; Nanda A; Ashe S; Rauta PR; Nayak B Carbohydr Polym; 2016 Aug; 147():509-516. PubMed ID: 27178958 [TBL] [Abstract][Full Text] [Related]
2. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Kanimozhi K; Khaleel Basha S; Sugantha Kumari V Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():484-91. PubMed ID: 26838875 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Zarekhalili Z; Bahrami SH; Ranjbar-Mohammadi M; Milan PB Int J Biol Macromol; 2017 Jan; 94(Pt A):679-690. PubMed ID: 27777080 [TBL] [Abstract][Full Text] [Related]
4. A freeze-thawing method applied to the fabrication of 3-d curdlan/polyvinyl alcohol hydrogels as scaffolds for cell culture. Ding L; Song S; Chen L; Shi J; Zhao B; Teng G; Zhang J Int J Biol Macromol; 2021 Mar; 174():101-109. PubMed ID: 33513424 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible testing and physical properties of curdlan-grafted poly(vinyl alcohol) scaffold for bone tissue engineering. Hsieh WC; Hsu CC; Shiu LY; Zeng YJ Carbohydr Polym; 2017 Feb; 157():1341-1348. PubMed ID: 27987841 [TBL] [Abstract][Full Text] [Related]
7. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. Thomas LV; Arun U; Remya S; Nair PD J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S259-69. PubMed ID: 18925362 [TBL] [Abstract][Full Text] [Related]
8. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Zhou XH; Wei DX; Ye HM; Zhang X; Meng X; Zhou Q Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():326-335. PubMed ID: 27287128 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethyl-Kappa-Carrageenan Produced by a Green Process. Madruga LYC; Balaban RC; Popat KC; Kipper MJ Macromol Biosci; 2021 Jan; 21(1):e2000292. PubMed ID: 33021064 [TBL] [Abstract][Full Text] [Related]
10. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Poursamar SA; Azami M; Mozafari M Colloids Surf B Biointerfaces; 2011 Jun; 84(2):310-6. PubMed ID: 21310596 [TBL] [Abstract][Full Text] [Related]
11. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. Wiria FE; Chua CK; Leong KF; Quah ZY; Chandrasekaran M; Lee MW J Mater Sci Mater Med; 2008 Mar; 19(3):989-96. PubMed ID: 17665112 [TBL] [Abstract][Full Text] [Related]
12. Metformin hydrochloride-loaded poly(vinyl alcohol) composites as drug delivery systems. Cai X; Shao W; Luan Y; Pang J; Li F; Li Z J Nanosci Nanotechnol; 2011 Oct; 11(10):8621-7. PubMed ID: 22400234 [TBL] [Abstract][Full Text] [Related]
13. Nanofibrous scaffold from electrospinning biodegradable waterborne polyurethane/poly(vinyl alcohol) for tissue engineering application. Wu Y; Lin W; Hao H; Li J; Luo F; Tan H J Biomater Sci Polym Ed; 2017 May; 28(7):648-663. PubMed ID: 28277009 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Johnson T; Bahrampourian R; Patel A; Mequanint K Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448 [TBL] [Abstract][Full Text] [Related]
15. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration. Mahnama H; Dadbin S; Frounchi M; Rajabi S Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):928-935. PubMed ID: 27263327 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Wang M; Li J; Li W; Du Z; Qin S Int J Biol Macromol; 2018 Oct; 118(Pt A):41-48. PubMed ID: 29852226 [TBL] [Abstract][Full Text] [Related]
17. Morphological evaluation of bioartificial hydrogels as potential tissue engineering scaffolds. Cascone MG; Lazzeri L; Sparvoli E; Scatena M; Serino LP; Danti S J Mater Sci Mater Med; 2004 Dec; 15(12):1309-13. PubMed ID: 15747183 [TBL] [Abstract][Full Text] [Related]
18. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent. El-Fawal GF; Yassin AM; El-Deeb NM AAPS PharmSciTech; 2017 Jul; 18(5):1605-1616. PubMed ID: 27620196 [TBL] [Abstract][Full Text] [Related]
19. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering. Hsieh WC; Liau JJ Carbohydr Polym; 2013 Oct; 98(1):574-80. PubMed ID: 23987384 [TBL] [Abstract][Full Text] [Related]
20. Preparation, characterization, and properties of chitosan-g-poly(vinyl alcohol) copolymer. Huang M; Fang Y Biopolymers; 2006 Feb; 81(3):160-6. PubMed ID: 16224771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]