BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27179202)

  • 1. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.
    Bai X; Acharya K
    J Hazard Mater; 2016 Sep; 315():70-5. PubMed ID: 27179202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water.
    Bai X; Acharya K
    Sci Total Environ; 2017 Mar; 581-582():734-740. PubMed ID: 28089530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp.
    Wang S; Hu Y; Wang J
    J Environ Manage; 2018 Jul; 217():240-246. PubMed ID: 29604418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga.
    Bai X; Acharya K
    Environ Pollut; 2019 Apr; 247():534-540. PubMed ID: 30708315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ionizing radiation on the antimicrobial activity of the antibiotics sulfamethoxazole and trimethoprim.
    Sági G; Szabacsi K; Szabó L; Homlok R; Kovács K; Mohácsi-Farkas C; Pillai SD; Takács E; Wojnárovits L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jul; 53(8):687-693. PubMed ID: 29485359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance.
    DeLorenzo ME; Brooker J; Chung KW; Kelly M; Martinez J; Moore JG; Thomas M
    Environ Toxicol; 2016 Apr; 31(4):469-77. PubMed ID: 25348372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China.
    Yuan X; Li S; Hu J; Yu M; Li Y; Wang Z
    Sci Total Environ; 2019 Mar; 655():1125-1138. PubMed ID: 30577106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect Photodegradation of Sulfamethoxazole and Trimethoprim by Hydroxyl Radicals in Aquatic Environment: Mechanisms, Transformation Products and Eco-Toxicity Evaluation.
    Yang J; Lv G; Zhang C; Wang Z; Sun X
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream.
    Coogan MA; Edziyie RE; La Point TW; Venables BJ
    Chemosphere; 2007 May; 67(10):1911-8. PubMed ID: 17275881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus.
    Inoue Y; Hata T; Kawai S; Okamura H; Nishida T
    J Hazard Mater; 2010 Aug; 180(1-3):764-7. PubMed ID: 20434837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate.
    Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J
    J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid.
    Sun K; Kang F; Waigi MG; Gao Y; Huang Q
    Environ Pollut; 2017 Jan; 220(Pt A):105-111. PubMed ID: 27640762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells.
    Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F
    J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa.
    Wang S; Wang X; Poon K; Wang Y; Li S; Liu H; Lin S; Cai Z
    Chemosphere; 2013 Sep; 92(11):1498-505. PubMed ID: 23648333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron.
    Proia L; Morin S; Peipoch M; Romaní AM; Sabater S
    Sci Total Environ; 2011 Aug; 409(17):3129-37. PubMed ID: 21621820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO
    Cai Q; Hu J
    J Hazard Mater; 2017 Feb; 323(Pt A):527-536. PubMed ID: 27324695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis.
    Zhang YB; Zhou J; Xu QM; Cheng JS; Luo YL; Yuan YJ
    Sci Total Environ; 2016 Sep; 565():547-556. PubMed ID: 27203516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol.
    Tamura I; Kagota K; Yasuda Y; Yoneda S; Morita J; Nakada N; Kameda Y; Kimura K; Tatarazako N; Yamamoto H
    J Appl Toxicol; 2013 Nov; 33(11):1222-9. PubMed ID: 22806922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test.
    Su T; Deng H; Benskin JP; Radke M
    Chemosphere; 2016 Apr; 148():518-25. PubMed ID: 26845465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.