These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27179258)

  • 21. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Digital Remote Wireless Microphone Technology in Single-Sided Deaf Cochlear Implant Recipients.
    Wesarg T; Stelzig Y; Hilgert-Becker D; Kathage B; Wiebe K; Aschendorff A; Arndt S; Speck I
    J Am Acad Audiol; 2020 Apr; 31(4):246-256. PubMed ID: 31580804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors.
    Dwyer RT; Roberts J; Gifford RH
    J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing the benefit of sound processors coupled to personal FM systems.
    Wolfe J; Schafer EC
    J Am Acad Audiol; 2008 Sep; 19(8):585-94. PubMed ID: 19323350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled comparative clinical trial of hearing benefit outcomes for users of the Cochlear™ Nucleus
    Warren CD; Nel E; Boyd PJ
    Cochlear Implants Int; 2019 May; 20(3):116-126. PubMed ID: 30714500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Outcome evaluation on cochlear implant users with residual hearing.
    Neben N; Buechner A; Schuessler M; Lenarz T
    Cochlear Implants Int; 2018 Mar; 19(2):88-99. PubMed ID: 29214896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential Benefits of an Integrated Electric-Acoustic Sound Processor with Children: A Preliminary Report.
    Wolfe J; Neumann S; Schafer E; Marsh M; Wood M; Baker RS
    J Am Acad Audiol; 2017 Feb; 28(2):127-140. PubMed ID: 28240980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless and acoustic hearing with bone-anchored hearing devices.
    Bosman AJ; Mylanus EA; Hol MK; Snik AF
    Int J Audiol; 2015 Jul; 55(7):419-24. PubMed ID: 27176657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a New Algorithm to Optimize Audibility in Cochlear Implant Recipients.
    Holden LK; Firszt JB; Reeder RM; Dwyer NY; Stein AL; Litvak LM
    Ear Hear; 2019; 40(4):990-1000. PubMed ID: 30418283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Speech Recognition in Cochlear Implant Users with Different Speech Processors.
    Pinheiro MMC; Mancini PC; Soares AD; Ribas Â; Lima DP; Cavadas M; Banhara MR; Carvalho SADS; Buzo BC
    J Am Acad Audiol; 2021 Jul; 32(7):469-476. PubMed ID: 34847587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Results in Adult Cochlear Implant Recipients With Varied Asymmetric Hearing: A Prospective Longitudinal Study of Speech Recognition, Localization, and Participant Report.
    Firszt JB; Reeder RM; Holden LK; Dwyer NY;
    Ear Hear; 2018; 39(5):845-862. PubMed ID: 29373326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor.
    Potts LG; Kolb KA
    J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical Validation of a Sound Processor Upgrade in Direct Acoustic Cochlear Implant Subjects.
    Kludt E; D'hondt C; Lenarz T; Maier H
    Otol Neurotol; 2017 Jun; 38(5):655-661. PubMed ID: 28406848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benefits in Speech Recognition in Noise with Remote Wireless Microphones in Group Settings.
    Thibodeau LM
    J Am Acad Audiol; 2020 Jun; 31(6):404-411. PubMed ID: 31758679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems.
    Firszt JB; Holden LK; Skinner MW; Tobey EA; Peterson A; Gaggl W; Runge-Samuelson CL; Wackym PA
    Ear Hear; 2004 Aug; 25(4):375-87. PubMed ID: 15292777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Benefit of a Wireless Contralateral Routing of Signals (CROS) Microphone in Unilateral Cochlear Implant Recipients.
    Kurien G; Hwang E; Smilsky K; Smith L; Lin VYW; Nedzelski J; Chen JM
    Otol Neurotol; 2019 Feb; 40(2):e82-e88. PubMed ID: 30570612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benefits of upgrading to the Nucleus
    Todorov MJ; Galvin KL
    Cochlear Implants Int; 2018 Jul; 19(4):210-215. PubMed ID: 29566583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Adjustment of Upper Electrical Stimulation Levels in CI Programming and the Effect on Auditory Functioning.
    Vroegop JL; Dingemanse JG; van der Schroeff MP; Metselaar RM; Goedegebure A
    Ear Hear; 2017; 38(4):e232-e240. PubMed ID: 28125445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.