BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27179411)

  • 1. Toward in vivo two-photon analysis of mouse aqueous outflow structure and function.
    Gonzalez JM; Ko MK; Masedunskas A; Hong YK; Weigert R; Tan JCH
    Exp Eye Res; 2017 May; 158():161-170. PubMed ID: 27179411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collector Channels: Role and Evaluation in Schlemm's Canal Surgery.
    M Elhusseiny A; Jamerson EC; Menshawey R; Tam EK; El Sayed YM
    Curr Eye Res; 2020 Oct; 45(10):1181-1187. PubMed ID: 32449380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Imaging of the Intrascleral Aqueous Drainage System - New Insights for Glaucoma Surgery Targeting the Trabecular Meshwork].
    van Oterendorp C
    Klin Monbl Augenheilkd; 2018 Mar; 235(3):309-314. PubMed ID: 28187473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo imaging of the conventional aqueous outflow system.
    Lee D; Kolomeyer NN; Razeghinejad R; Myers JS
    Curr Opin Ophthalmol; 2021 May; 32(3):275-279. PubMed ID: 33653980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion.
    Xin C; Wang RK; Song S; Shen T; Wen J; Martin E; Jiang Y; Padilla S; Johnstone M
    Exp Eye Res; 2017 May; 158():171-186. PubMed ID: 27302601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed 3D micro-modeling of rat aqueous drainage channels based on two-photon imaging: simulating aqueous humor through trabecular meshwork and Schlemm's canal by two-way fluid structure interaction approach.
    Zhang J; Qian X; Zhang H; Chu H; Xu H; Liu Z
    Med Biol Eng Comput; 2022 Jul; 60(7):1915-1927. PubMed ID: 35524088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of neural innervation in the human conventional outflow pathway distal to Schlemm's canal.
    Hann CR; Bentley MD; Vercnocke A; Roy Chowdhury U; Fautsch MP
    Exp Eye Res; 2022 Aug; 221():109132. PubMed ID: 35636488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT).
    Hann CR; Bentley MD; Vercnocke A; Ritman EL; Fautsch MP
    Exp Eye Res; 2011 Feb; 92(2):104-11. PubMed ID: 21187085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Segmentation and Quantitative Measurement of the Aqueous Outflow System of Intact Mouse Eyes Based on Spectral Two-Photon Microscopy Techniques.
    Zhang X; Liu N; Mak PU; Pun SH; Vai MI; Masihzadeh O; Kahook MY; Lei TC; Ammar DA
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3159-67. PubMed ID: 27309620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional assessment of the aqueous humour distal outflow pathways in bovine eyes using time-of-flight magnetic resonance tomography.
    Wecker T; van Oterendorp C; Reichardt W
    Exp Eye Res; 2018 Jan; 166():168-173. PubMed ID: 29074388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling.
    Karimi A; Crouch DJ; Razaghi R; Crawford Downs J; Acott TS; Kelley MJ; Behnsen JG; Bosworth LA; Sheridan CM
    Comput Methods Programs Biomed; 2023 Jun; 236():107485. PubMed ID: 37149973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanylate cyclase activators, cell volume changes and IOP reduction.
    Ellis DZ
    Cell Physiol Biochem; 2011; 28(6):1145-54. PubMed ID: 22179003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes.
    Li G; Mukherjee D; Navarro I; Ashpole NE; Sherwood JM; Chang J; Overby DR; Yuan F; Gonzalez P; Kopczynski CC; Farsiu S; Stamer WD
    Eur J Pharmacol; 2016 Sep; 787():20-31. PubMed ID: 27085895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schlemm's canal: the outflow 'vessel'.
    Lewczuk K; Jabłońska J; Konopińska J; Mariak Z; Rękas M
    Acta Ophthalmol; 2022 Jun; 100(4):e881-e890. PubMed ID: 34519170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retroperfusion studies of the aqueous outflow system. Part 2: Studies in human eyes.
    Ethier CR; Coloma FM; de Kater AW; Allingham RR
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2466-75. PubMed ID: 7591636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel characterization and live imaging of Schlemm's canal expressing Prox-1.
    Truong TN; Li H; Hong YK; Chen L
    PLoS One; 2014; 9(5):e98245. PubMed ID: 24827370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The three-dimensional organisation of the post-trabecular aqueous outflow pathway and limbal vasculature in the mouse.
    van der Merwe EL; Kidson SH
    Exp Eye Res; 2014 Aug; 125():226-35. PubMed ID: 24979218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Use of Trypan Blue During Canalicular Glaucoma Surgery to Identify Aqueous Outflow to Episcleral and Intrascleral Veins.
    Laroche D; Nortey A; Ng C
    J Glaucoma; 2018 Oct; 27(10):e158-e161. PubMed ID: 30045091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.
    Braakman ST; Read AT; Chan DW; Ethier CR; Overby DR
    Exp Eye Res; 2015 Jan; 130():87-96. PubMed ID: 25450060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous outflow - A continuum from trabecular meshwork to episcleral veins.
    Carreon T; van der Merwe E; Fellman RL; Johnstone M; Bhattacharya SK
    Prog Retin Eye Res; 2017 Mar; 57():108-133. PubMed ID: 28028002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.