These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27179489)

  • 1. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films.
    Yoon H; McKenna GB
    J Chem Phys; 2016 May; 144(18):184501. PubMed ID: 27179489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dramatic stiffening of ultrathin polymer films in the rubbery regime.
    O'Connell PA; McKenna GB
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):143-50. PubMed ID: 16721503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation.
    Chapuis P; Montgomery PC; Anstotz F; Leong-Hoï A; Gauthier C; Baschnagel J; Reiter G; McKenna GB; Rubin A
    Rev Sci Instrum; 2017 Sep; 88(9):093901. PubMed ID: 28964230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological measurements of the thermoviscoelastic response of ultrathin polymer films.
    O'Connell PA; McKenna GB
    Science; 2005 Mar; 307(5716):1760-3. PubMed ID: 15774754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate Temperature to Control Moduli and Water Uptake in Thin Films of Vapor Deposited N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPD).
    Torres JM; Bakken N; Li J; Vogt BD
    J Phys Chem B; 2015 Sep; 119(35):11928-34. PubMed ID: 26230183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement and modeling of viscoelastic-viscoplastic properties of freely standing thin polystyrene films.
    Xiao Y; Bai P; Zhang Z; Guo Y
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38054519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow dynamics near glass transitions in thin polymer films.
    Fukao K; Miyamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011803. PubMed ID: 11461279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the stress relaxation modulus of polymer thin films via thermal wrinkling.
    Chan EP; Kundu S; Lin Q; Stafford CM
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):331-8. PubMed ID: 21190386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hole growth in freely standing polystyrene films probed using a differential pressure experiment.
    Roth CB; Dutcher JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021803. PubMed ID: 16196593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.
    Chung JY; Douglas JF; Stafford CM
    J Chem Phys; 2017 Oct; 147(15):154902. PubMed ID: 29055329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of the two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films.
    Prevosto D; Capaccioli S; Ngai KL
    J Chem Phys; 2014 Feb; 140(7):074903. PubMed ID: 24559366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films.
    O'Connell PA; McKenna GB
    Rev Sci Instrum; 2007 Jan; 78(1):013901. PubMed ID: 17503927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel nano-bubble inflation method for determining the viscoelastic properties of ultrathin polymer films.
    O'Connell PA; McKenna GB
    Scanning; 2008; 30(2):184-96. PubMed ID: 18241041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films.
    Roth CB; Pound A; Kamp SW; Murray CA; Dutcher JR
    Eur Phys J E Soft Matter; 2006 Aug; 20(4):441-8. PubMed ID: 16957829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films.
    Dalnoki-Veress K; Forrest JA; Murray C; Gigault C; Dutcher JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031801. PubMed ID: 11308668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Hyperbranched Polymers under Confinement: A Dielectric Relaxation Study.
    Androulaki K; Chrissopoulou K; Prevosto D; Labardi M; Anastasiadis SH
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12387-98. PubMed ID: 25603491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric relaxation of thin films of polyamide random copolymers.
    Taniguchi N; Fukao K; Sotta P; Long DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052605. PubMed ID: 26066192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature.
    Torres JM; Stafford CM; Vogt BD
    ACS Nano; 2009 Sep; 3(9):2677-85. PubMed ID: 19702280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: novel fluorescence measurements.
    Ellison CJ; Kim SD; Hall DB; Torkelson JM
    Eur Phys J E Soft Matter; 2002 May; 8(2):155-66. PubMed ID: 15010965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.