These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 27179537)
1. Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Battini F; Bernardi R; Turrini A; Agnolucci M; Giovannetti M Mycorrhiza; 2016 Oct; 26(7):699-707. PubMed ID: 27179537 [TBL] [Abstract][Full Text] [Related]
2. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system. Srivastava S; Conlan XA; Cahill DM; Adholeya A Mycorrhiza; 2016 Nov; 26(8):919-930. PubMed ID: 27485855 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Toussaint J-; Smith FA; Smith SE Mycorrhiza; 2007 Jun; 17(4):291-297. PubMed ID: 17273856 [TBL] [Abstract][Full Text] [Related]
4. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Battini F; Cristani C; Giovannetti M; Agnolucci M Microbiol Res; 2016 Feb; 183():68-79. PubMed ID: 26805620 [TBL] [Abstract][Full Text] [Related]
5. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil ( Kwon DY; Kim YB; Kim JK; Park SU Prep Biochem Biotechnol; 2021; 51(1):35-43. PubMed ID: 32687005 [TBL] [Abstract][Full Text] [Related]
6. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Xiao Y; Zhang L; Gao S; Saechao S; Di P; Chen J; Chen W PLoS One; 2011; 6(12):e29713. PubMed ID: 22242141 [TBL] [Abstract][Full Text] [Related]
7. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Gang DR; Beuerle T; Ullmann P; Werck-Reichhart D; Pichersky E Plant Physiol; 2002 Nov; 130(3):1536-44. PubMed ID: 12428018 [TBL] [Abstract][Full Text] [Related]
8. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum). Strazzer P; Guzzo F; Levi M J Plant Physiol; 2011 Feb; 168(3):288-93. PubMed ID: 20943285 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis. Kim YB; Uddina MR; Kim Y; Park CG; Park SU Nat Prod Commun; 2014 Sep; 9(9):1311-4. PubMed ID: 25918800 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Kwon DY; Li X; Kim JK; Park SU Saudi J Biol Sci; 2019 Mar; 26(3):469-472. PubMed ID: 30899160 [TBL] [Abstract][Full Text] [Related]
12. Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Kintzios S; Kollias H; Straitouris E; Makri O Biotechnol Lett; 2004 Mar; 26(6):521-3. PubMed ID: 15127795 [TBL] [Abstract][Full Text] [Related]
13. Influence of growth regulators and sucrose concentrations on growth and rosmarinic acid production in calli and suspension cultures of Coleus blumei. Qian J; Guiping L; Xiujun L; Xincai H; Hongmei L Nat Prod Res; 2009; 23(2):127-37. PubMed ID: 19173121 [TBL] [Abstract][Full Text] [Related]
14. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). Kim HJ; Chen F; Wang X; Rajapakse NC J Agric Food Chem; 2006 Mar; 54(6):2327-32. PubMed ID: 16536615 [TBL] [Abstract][Full Text] [Related]
15. Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil ( Nazir M; Asad Ullah M; Mumtaz S; Siddiquah A; Shah M; Drouet S; Hano C; Abbasi BH Molecules; 2020 Feb; 25(5):. PubMed ID: 32121015 [TBL] [Abstract][Full Text] [Related]
16. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Kim HJ; Chen F; Wang X; Rajapakse NC J Agric Food Chem; 2005 May; 53(9):3696-701. PubMed ID: 15853422 [TBL] [Abstract][Full Text] [Related]
17. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis. Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195 [TBL] [Abstract][Full Text] [Related]
18. Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Li T; Sun Y; Ruan Y; Xu L; Hu Y; Hao Z; Zhang X; Li H; Wang Y; Yang L; Chen B Mycorrhiza; 2016 Nov; 26(8):879-893. PubMed ID: 27456042 [TBL] [Abstract][Full Text] [Related]
19. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture. Park WT; Arasu MV; Al-Dhabi NA; Yeo SK; Jeon J; Park JS; Lee SY; Park SU Molecules; 2016 Mar; 21(4):426. PubMed ID: 27043507 [TBL] [Abstract][Full Text] [Related]
20. Evolution of rosmarinic acid biosynthesis. Petersen M; Abdullah Y; Benner J; Eberle D; Gehlen K; Hücherig S; Janiak V; Kim KH; Sander M; Weitzel C; Wolters S Phytochemistry; 2009; 70(15-16):1663-79. PubMed ID: 19560175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]