BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1232 related articles for article (PubMed ID: 27180026)

  • 1. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.
    Schneider MC; Chu S; Randolph MA; Bryant SJ
    Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels.
    Schneider MC; Barnes CA; Bryant SJ
    Biotechnol Bioeng; 2017 Sep; 114(9):2096-2108. PubMed ID: 28436002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
    Roberts JJ; Nicodemus GD; Greenwald EC; Bryant SJ
    Clin Orthop Relat Res; 2011 Oct; 469(10):2725-34. PubMed ID: 21347817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach.
    Schneider MC; Lalitha Sridhar S; Vernerey FJ; Bryant SJ
    J Mater Chem B; 2020 Apr; 8(14):2775-2791. PubMed ID: 32155233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations.
    Chu S; Maples MM; Bryant SJ
    Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ; Bender RJ; Durand KL; Anseth KS
    Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound monitoring of cartilaginous matrix evolution in degradable PEG hydrogels.
    Rice MA; Waters KR; Anseth KS
    Acta Biomater; 2009 Jan; 5(1):152-61. PubMed ID: 18793879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels.
    Skaalure SC; Radhakrishnan SM; Bryant SJ
    J Biomed Mater Res A; 2015 Jun; 103(6):2186-92. PubMed ID: 25205522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development.
    Roberts JJ; Bryant SJ
    Biomaterials; 2013 Dec; 34(38):9969-79. PubMed ID: 24060418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels.
    Skaalure SC; Milligan IL; Bryant SJ
    Biomed Mater; 2012 Apr; 7(2):024111. PubMed ID: 22456004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.
    Skaalure SC; Chu S; Bryant SJ
    Adv Healthc Mater; 2015 Feb; 4(3):420-31. PubMed ID: 25296398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Heterogeneities Improve Matrix Connectivity in Degradable and Photoclickable Poly(ethylene glycol) Hydrogels for Applications in Tissue Engineering.
    Schneider MC; Chu S; Sridhar SL; de Roucy G; Vernerey FJ; Bryant SJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2480-2492. PubMed ID: 29732400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage.
    Bryant SJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.
    Wang J; Zhang F; Tsang WP; Wan C; Wu C
    Biomaterials; 2017 Mar; 120():11-21. PubMed ID: 28024231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model.
    Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH
    Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.
    Sridhar BV; Brock JL; Silver JS; Leight JL; Randolph MA; Anseth KS
    Adv Healthc Mater; 2015 Apr; 4(5):702-13. PubMed ID: 25607633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.