BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27180089)

  • 1. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae.
    Soontorngun N
    Curr Genet; 2017 Feb; 63(1):1-7. PubMed ID: 27180089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Yap family and its role in stress response.
    Rodrigues-Pousada C; Menezes RA; Pimentel C
    Yeast; 2010 May; 27(5):245-58. PubMed ID: 20148391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cowpea NAC Transcription Factors Positively Regulate Cellular Stress Response and Balance Energy Metabolism in Yeast
    Srivastava R; Sahoo L
    ACS Synth Biol; 2021 Sep; 10(9):2286-2307. PubMed ID: 34470212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae.
    Tangsombatvichit P; Semkiv MV; Sibirny AA; Jensen LT; Ratanakhanokchai K; Soontorngun N
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The stress response in the yeast Saccharomyces cerevisiae].
    Folch-Mallol JL; Garay-Arroyo A; Lledías F; Covarrubias Robles AA
    Rev Latinoam Microbiol; 2004; 46(1-2):24-46. PubMed ID: 17061523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae.
    Rødkaer SV; Faergeman NJ
    FEMS Yeast Res; 2014 Aug; 14(5):683-96. PubMed ID: 24738657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast.
    Yi DG; Huh WK
    FEBS Lett; 2015 Aug; 589(18):2409-16. PubMed ID: 26188548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent Evolution of the Transcriptional Network Controlled by Snf1-Interacting Protein Sip4 in Budding Yeasts.
    Mehlgarten C; Krijger JJ; Lemnian I; Gohr A; Kasper L; Diesing AK; Grosse I; Breunig KD
    PLoS One; 2015; 10(10):e0139464. PubMed ID: 26440109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides.
    Hesketh A; Vergnano M; Oliver SG
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different levels of catabolite repression optimize growth in stable and variable environments.
    New AM; Cerulus B; Govers SK; Perez-Samper G; Zhu B; Boogmans S; Xavier JB; Verstrepen KJ
    PLoS Biol; 2014 Jan; 12(1):e1001764. PubMed ID: 24453942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk in NAD
    James Theoga Raj C; Lin SJ
    Curr Genet; 2019 Oct; 65(5):1113-1119. PubMed ID: 30993413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-beta homolog Rim11.
    Rubin-Bejerano I; Sagee S; Friedman O; Pnueli L; Kassir Y
    Mol Cell Biol; 2004 Aug; 24(16):6967-79. PubMed ID: 15282298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions.
    Gomar-Alba M; Morcillo-Parra MÁ; Olmo ML
    FEMS Yeast Res; 2015 Aug; 15(5):fov039. PubMed ID: 26048894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.
    Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN
    BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress.
    Casamayor A; Serrano R; Platara M; Casado C; Ruiz A; Ariño J
    Biochem J; 2012 May; 444(1):39-49. PubMed ID: 22372618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.