BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27180633)

  • 1. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state.
    Kloz M; Weißenborn J; Polívka T; Frank HA; Kennis JT
    Phys Chem Chem Phys; 2016 May; 18(21):14619-28. PubMed ID: 27180633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex.
    Yoshizawa M; Nakamura R; Yoshimatsu O; Abe K; Sakai S; Nakagawa K; Fujii R; Nango M; Hashimoto H
    Acta Biochim Pol; 2012; 59(1):49-52. PubMed ID: 22428121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.
    Shim S; Mathies RA
    J Phys Chem B; 2008 Apr; 112(15):4826-32. PubMed ID: 18363396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.
    Redeckas K; Voiciuk V; Vengris M
    Photosynth Res; 2016 May; 128(2):169-81. PubMed ID: 26742754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the (forbidden) S1 state in carotenoids.
    Polívka T; Herek JL; Zigmantas D; Akerlund HE; Sundström V
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4914-7. PubMed ID: 10220393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation mechanism of β-carotene from S2 (1Bu(+)) state to S1 (2Ag(-)) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900-1550 nm region.
    Takaya T; Iwata K
    J Phys Chem A; 2014 Jun; 118(23):4071-8. PubMed ID: 24844607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-modulated femtosecond stimulated Raman spectroscopy-approach towards automatic data processing.
    Kloz M; van Grondelle R; Kennis JT
    Phys Chem Chem Phys; 2011 Oct; 13(40):18123-33. PubMed ID: 21909554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.
    Dobner S; Groß P; Fallnich C
    J Chem Phys; 2013 Jun; 138(24):244201. PubMed ID: 23822236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure and solvent on Raman spectra of all-trans-beta-carotene.
    Liu WL; Zheng ZR; Zhu RB; Liu ZG; Xu DP; Yu HM; Wu WZ; Li AH; Yang YQ; Su WH
    J Phys Chem A; 2007 Oct; 111(40):10044-9. PubMed ID: 17880189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy.
    McCamant DW; Kukura P; Mathies RA
    Appl Spectrosc; 2003 Nov; 57(11):1317-23. PubMed ID: 14658143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiempirical and Raman spectroscopic studies of carotenoids.
    Weesie RJ; Merlin JC; Lugtenburg J; Britton G; Jansen FJ; Cornard JP
    Biospectroscopy; 1999; 5(1):19-33. PubMed ID: 10219878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.
    Frontiera RR; Henry AI; Gruenke NL; Van Duyne RP
    J Phys Chem Lett; 2011 May; 2(10):1199-203. PubMed ID: 26295326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm.
    Pontecorvo E; Ferrante C; Elles CG; Scopigno T
    Opt Express; 2013 Mar; 21(6):6866-72. PubMed ID: 23546068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Time-resolved Near-IR Stimulated Raman Measurements of Functional π-conjugate Systems.
    Takaya T; Iwata K
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32091004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.
    Kim HM; Kim H; Yang I; Jin SM; Suh YD
    Phys Chem Chem Phys; 2014 Mar; 16(11):5312-8. PubMed ID: 24496293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes.
    Buckup T; Motzkus M
    Annu Rev Phys Chem; 2014; 65():39-57. PubMed ID: 24245903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional electronic-Raman spectroscopy.
    Zhang Z; Huerta-Viga A; Tan HS
    Opt Lett; 2018 Feb; 43(4):939-942. PubMed ID: 29444032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy.
    Cannizzaro C; Rhiel M; Marison I; von Stockar U
    Biotechnol Bioeng; 2003 Sep; 83(6):668-80. PubMed ID: 12889031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond Stimulated Raman Spectroscopy.
    Dietze DR; Mathies RA
    Chemphyschem; 2016 May; 17(9):1224-51. PubMed ID: 26919612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, and solution.
    Berg CJ; LaFountain AM; Prum RO; Frank HA; Tauber MJ
    Arch Biochem Biophys; 2013 Nov; 539(2):142-55. PubMed ID: 24055537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.