These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27181601)

  • 1. Monomolecular adsorption on nanoparticles with repulsive interactions: a Monte Carlo study.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Chem Chem Phys; 2016 Jun; 18(21):14610-8. PubMed ID: 27181601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of adsorption on nanoparticles: the case of attractive interactions.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061602. PubMed ID: 23367959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption on nanoparticles with surface defects: mean field and energy level approaches.
    Pasinetti PM; Pena-Ausar JE; Pinto OA
    Phys Chem Chem Phys; 2024 Apr; 26(15):11815-11824. PubMed ID: 38566611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations on the effect of substrate geometry on adsorption and compression.
    Wetzel TE; Erickson JS; Donohue PS; Charniak CL; Aranovich GL; Donohue MD
    J Chem Phys; 2004 Jun; 120(24):11765-74. PubMed ID: 15268211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study.
    You FQ; Yu YX; Gao GH
    J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of Polyelectrolyte-Nanoparticle Systems on Silica: Influence on Interaction Forces.
    Sennerfors T; Fröberg JC; Tiberg F
    J Colloid Interface Sci; 2000 Aug; 228(1):127-134. PubMed ID: 10882502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions.
    Torres-Knoop A; Poursaeidesfahani A; Vlugt TJH; Dubbeldam D
    J Chem Theory Comput; 2017 Jul; 13(7):3326-3339. PubMed ID: 28521093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.
    Szori M; Jedlovszky P; Roeselová M
    Phys Chem Chem Phys; 2010 May; 12(18):4604-16. PubMed ID: 20428540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle adsorption on a weak polyelectrolyte. Stiffness, pH, charge mobility, and ionic concentration effects investigated by Monte Carlo simulations.
    Ulrich S; Seijo M; Laguecir A; Stoll S
    J Phys Chem B; 2006 Oct; 110(42):20954-64. PubMed ID: 17048913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adsorption of a mixture of particles with non-additive interactions: a Monte Carlo study.
    Pinto OA; Pasinetti PM; Ramirez-Pastor AJ; Nieto FD
    Phys Chem Chem Phys; 2015 Feb; 17(5):3050-8. PubMed ID: 25512955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption behavior of repulsive molecules.
    Aranovich GL; Wetzel TE; Donohue MD
    J Phys Chem B; 2005 May; 109(20):10189-93. PubMed ID: 16852235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Phys Chem B; 2005 Jun; 109(23):11683-92. PubMed ID: 16852434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2008 Oct; 112(43):10708-12. PubMed ID: 18785690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of confinement on the molar enthalpy of argon adsorption in graphitic cylindrical pores: a grand canonical Monte Carlo (GCMC) simulation study.
    Liu Z; Do DD; Nicholson D
    J Colloid Interface Sci; 2011 Sep; 361(1):278-87. PubMed ID: 21696750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks.
    Yang Q; Zhong C
    Langmuir; 2009 Feb; 25(4):2302-8. PubMed ID: 19199723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys.
    Chen W; Dalach P; Schneider WF; Wolverton C
    Langmuir; 2012 Mar; 28(10):4683-93. PubMed ID: 22352380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.