BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27182812)

  • 1. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment.
    Huang J; Wang L; Xiong C; Yuan F
    Biomaterials; 2016 Aug; 98():103-12. PubMed ID: 27182812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel.
    Nagai Y; Yokoi H; Kaihara K; Naruse K
    Biomaterials; 2012 Feb; 33(4):1044-51. PubMed ID: 22056753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
    Cassereau L; Miroshnikova YA; Ou G; Lakins J; Weaver VM
    J Biotechnol; 2015 Jan; 193():66-9. PubMed ID: 25435379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-wave elasticity measurements of three-dimensional cell cultures for mechanobiology.
    Kuo PL; Charng CC; Wu PC; Li PC
    J Cell Sci; 2017 Jan; 130(1):292-302. PubMed ID: 27505887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically Loading Cell/Hydrogel Constructs with Low-Intensity Pulsed Ultrasound for Bone Repair.
    Veronick JA; Assanah F; Piscopo N; Kutes Y; Vyas V; Nair LS; Huey BD; Khan Y
    Tissue Eng Part A; 2018 Feb; 24(3-4):254-263. PubMed ID: 28610471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.
    Lee SH; Shim KY; Kim B; Sung JH
    Biotechnol Prog; 2017 May; 33(3):580-589. PubMed ID: 28247962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK.
    Taubenberger AV; Girardo S; Träber N; Fischer-Friedrich E; Kräter M; Wagner K; Kurth T; Richter I; Haller B; Binner M; Hahn D; Freudenberg U; Werner C; Guck J
    Adv Biosyst; 2019 Sep; 3(9):e1900128. PubMed ID: 32648654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.
    González-Avalos P; Mürnseer M; Deeg J; Bachmann A; Spatz J; Dooley S; Eils R; Gladilin E
    J Microsc; 2017 May; 266(2):115-125. PubMed ID: 28267878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering three-dimensional cell mechanical microenvironment with hydrogels.
    Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ
    Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.
    Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Cell-Matrix Interactions in 3D Collagen Hydrogel Culture Systems.
    Short AR; Czeisler C; Stocker B; Cole S; Otero JJ; Winter JO
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28221720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling fibroblast proliferation with dimensionality-specific response by stiffness of injectable gelatin hydrogels.
    Wang LS; Chung JE; Kurisawa M
    J Biomater Sci Polym Ed; 2012; 23(14):1793-806. PubMed ID: 21943785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel.
    Cha C; Kim SY; Cao L; Kong H
    Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic hydrogels for 3D cell culture.
    Chaudhuri O
    Biomater Sci; 2017 Jul; 5(8):1480-1490. PubMed ID: 28584885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.
    Sinha R; Verdonschot N; Koopman B; Rouwkema J
    Tissue Eng Part B Rev; 2017 Oct; 23(5):494-504. PubMed ID: 28376649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis.
    Miyajima H; Matsumoto T; Sakai T; Yamaguchi S; An SH; Abe M; Wakisaka S; Lee KY; Egusa H; Imazato S
    Biomaterials; 2011 Oct; 32(28):6754-63. PubMed ID: 21683999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of mechanical tractions exerted by cells in three-dimensional matrices.
    Legant WR; Miller JS; Blakely BL; Cohen DM; Genin GM; Chen CS
    Nat Methods; 2010 Dec; 7(12):969-71. PubMed ID: 21076420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of hollow cell spheroids in microbead templated chambers.
    Wang E; Wang D; Geng A; Seo R; Gong X
    Biomaterials; 2017 Oct; 143():57-64. PubMed ID: 28763630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles.
    Chippada U; Yurke B; Georges PC; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021014. PubMed ID: 19102573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.