These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 27182979)
41. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil. Omouri Z; Hawari J; Fournier M; Robidoux PY Ecotoxicol Environ Saf; 2018 Jan; 147():1-8. PubMed ID: 28822260 [TBL] [Abstract][Full Text] [Related]
42. Bioremediation of Cd-spiked soil using earthworms (Eisenia fetida): Enhancement with biochar and Bacillus megatherium application. Xiao R; Liu X; Ali A; Chen A; Zhang M; Li R; Chang H; Zhang Z Chemosphere; 2021 Feb; 264(Pt 2):128517. PubMed ID: 33049509 [TBL] [Abstract][Full Text] [Related]
43. Effects of elevated temperatures and cadmium exposure on stress biomarkers at different biological complexity levels in Eisenia fetida earthworms. Urionabarrenetxea E; Garcia-Velasco N; Marigómez I; Soto M Comp Biochem Physiol C Toxicol Pharmacol; 2020 May; 231():108735. PubMed ID: 32142922 [TBL] [Abstract][Full Text] [Related]
44. The migration of cadmium and lead in soil columns and their bioaccumulation in a multi-species soil system. Lai C; Li D; Qin J; Li J; Yan Z; Chen G; Li H Chemosphere; 2021 Jan; 262():127718. PubMed ID: 32763573 [TBL] [Abstract][Full Text] [Related]
45. Selective bioaccumulation of neonicotinoids and sub-lethal effects in the earthworm Eisenia andrei exposed to environmental concentrations in an artificial soil. Chevillot F; Convert Y; Desrosiers M; Cadoret N; Veilleux É; Cabana H; Bellenger JP Chemosphere; 2017 Nov; 186():839-847. PubMed ID: 28826132 [TBL] [Abstract][Full Text] [Related]
46. Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. Abd Aziz A; Lee BT; Han HJ; Kim KW Environ Geochem Health; 2019 Feb; 41(1):447-460. PubMed ID: 30132092 [TBL] [Abstract][Full Text] [Related]
47. Metal accumulation in earthworms inhabiting floodplain soils. Vijver MG; Vink JP; Miermans CJ; van Gestel CA Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683 [TBL] [Abstract][Full Text] [Related]
48. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Nirola R; Megharaj M; Venkateswarlu K; Aryal R; Correll R; Naidu R Ecotoxicol Environ Saf; 2016 Jul; 129():264-72. PubMed ID: 27057994 [TBL] [Abstract][Full Text] [Related]
49. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367 [TBL] [Abstract][Full Text] [Related]
50. Forest floor decomposition, metal exchangeability, and metal bioaccumulation by exotic earthworms: Amynthas agrestis and Lumbricus rubellus. Richardson JB; Görres JH; Friedland AJ Environ Sci Pollut Res Int; 2016 Sep; 23(18):18253-66. PubMed ID: 27272919 [TBL] [Abstract][Full Text] [Related]
51. The influence of hydrous ferric oxide, earthworms, and a hypertolerant plant on arsenic and iron bioavailability, fate, and transport in soils. Maki BC; Hodges KR; Ford SC; Sofield RM Environ Sci Pollut Res Int; 2017 Dec; 24(36):27710-27723. PubMed ID: 27778268 [TBL] [Abstract][Full Text] [Related]
52. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Ownby DR; Galvan KA; Lydy MJ Environ Pollut; 2005 Jul; 136(2):315-21. PubMed ID: 15840539 [TBL] [Abstract][Full Text] [Related]
53. Toxicokinetics of metals in the soil invertebrate Enchytraeus crypticus exposed to field-contaminated soils from a mining area. Zhang L; Van Gestel CAM; Li Z Environ Pollut; 2022 May; 300():118874. PubMed ID: 35101558 [TBL] [Abstract][Full Text] [Related]
54. Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Grumiaux F; Demuynck S; Schikorski D; Lemière S; Leprêtre A Chemosphere; 2010 Mar; 79(2):156-61. PubMed ID: 20129643 [TBL] [Abstract][Full Text] [Related]
55. Are the Brazilian prevention values for copper and zinc in soils suitable for protecting earthworms against metal toxicity? Messias TG; Alves PRL; Cardoso EJBN Environ Sci Pollut Res Int; 2023 Mar; 30(14):40641-40653. PubMed ID: 36622600 [TBL] [Abstract][Full Text] [Related]
56. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
57. Bioavailability of copper and zinc in mining soils. Smith BA; Greenberg B; Stephenson GL Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672 [TBL] [Abstract][Full Text] [Related]
58. Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei). Yu S; Lanno RP Environ Toxicol Chem; 2010 Jul; 29(7):1568-74. PubMed ID: 20821607 [TBL] [Abstract][Full Text] [Related]
59. Eisenia fetida impact on cadmium availability and distribution in specific components of the earthworm drilosphere. Ge Y; Huang C; Zhou W; Shen Z; Qiao Y Environ Sci Pollut Res Int; 2023 Nov; 30(52):112222-112235. PubMed ID: 37831264 [TBL] [Abstract][Full Text] [Related]
60. Accumulation of 2,4-dinitroanisole in the earthworm Eisenia fetida from chemically spiked and aged natural soils. Lotufo GR; Coleman JG; Harmon AR; Chappell MA; Bednar AJ; Russell AL; Smith JC; Brasfield SM Environ Toxicol Chem; 2016 Jul; 35(7):1835-42. PubMed ID: 26666709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]