BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27183011)

  • 1. Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide.
    Inokuma K; Bamba T; Ishii J; Ito Y; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2016 Nov; 113(11):2358-66. PubMed ID: 27183011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain.
    Bamba T; Inokuma K; Hasunuma T; Kondo A
    J Biosci Bioeng; 2018 Mar; 125(3):306-310. PubMed ID: 29175124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter.
    Inokuma K; Hasunuma T; Kondo A
    Biotechnol Biofuels; 2014 Jan; 7(1):8. PubMed ID: 24423072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of beta-glucosidase activity on the cell-surface of sake yeast by disruption of SED1.
    Kotaka A; Sahara H; Kuroda K; Kondo A; Ueda M; Hata Y
    J Biosci Bioeng; 2010 May; 109(5):442-6. PubMed ID: 20347765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains.
    Inokuma K; Yoshida T; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1655-63. PubMed ID: 25432675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains.
    Inokuma K; Kurono H; den Haan R; van Zyl WH; Hasunuma T; Kondo A
    Metab Eng; 2020 Jan; 57():110-117. PubMed ID: 31715252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying Pichia pastoris.
    Inokuma K; Miyamoto S; Morinaga K; Kobayashi Y; Kumokita R; Bamba T; Ito Y; Kondo A; Hasunuma T
    Biotechnol Bioeng; 2023 Apr; 120(4):1097-1107. PubMed ID: 36575132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae.
    Liu Z; Inokuma K; Ho SH; den Haan R; van Zyl WH; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2017 Jun; 114(6):1201-1207. PubMed ID: 28112385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface engineering of yeast: construction of arming yeast with biocatalyst.
    Ueda M; Tanaka A
    J Biosci Bioeng; 2000; 90(2):125-36. PubMed ID: 16232831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations.
    Liu SH; Chou WI; Sheu CC; Chang MD
    Biochem Biophys Res Commun; 2005 Jan; 326(4):817-24. PubMed ID: 15607743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae.
    Chen N; Yang S; You D; Shen J; Ruan B; Wu M; Zhang J; Luo X; Tang H
    Metab Eng; 2023 May; 77():273-282. PubMed ID: 37100192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain.
    Inokuma K; Kitada Y; Bamba T; Kobayashi Y; Yukawa T; den Haan R; van Zyl WH; Kondo A; Hasunuma T
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5895-5904. PubMed ID: 34272577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Display cellulolytic enzymes on Saccharomyces cerevisiae cell surface by using Flo1p as an anchor protein for cellulosic ethanol production].
    Mo C; Yang Y; Chen N; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1401-13. PubMed ID: 25720155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains.
    Ito J; Fujita Y; Ueda M; Fukuda H; Kondo A
    Biotechnol Prog; 2004; 20(3):688-91. PubMed ID: 15176869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from cellulosic materials using cellulase-expressing yeast.
    Yanase S; Yamada R; Kaneko S; Noda H; Hasunuma T; Tanaka T; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2010 May; 5(5):449-55. PubMed ID: 20349451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains.
    Ito J; Kosugi A; Tanaka T; Kuroda K; Shibasaki S; Ogino C; Ueda M; Fukuda H; Doi RH; Kondo A
    Appl Environ Microbiol; 2009 Jun; 75(12):4149-54. PubMed ID: 19411409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.
    Fujita Y; Takahashi S; Ueda M; Tanaka A; Okada H; Morikawa Y; Kawaguchi T; Arai M; Fukuda H; Kondo A
    Appl Environ Microbiol; 2002 Oct; 68(10):5136-41. PubMed ID: 12324364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.