These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 27183150)
1. Disruption of the gene C12orf35 leads to increased productivities in recombinant CHO cell lines. Ritter A; Rauschert T; Oertli M; Piehlmaier D; Mantas P; Kuntzelmann G; Lageyre N; Brannetti B; Voedisch B; Geisse S; Jostock T; Laux H Biotechnol Bioeng; 2016 Nov; 113(11):2433-42. PubMed ID: 27183150 [TBL] [Abstract][Full Text] [Related]
2. Fam60A plays a role for production stabilities of recombinant CHO cell lines. Ritter A; Nuciforo S; Schulze A; Oertli M; Rauschert T; Voedisch B; Geisse S; Jostock T; Laux H Biotechnol Bioeng; 2017 Mar; 114(3):701-704. PubMed ID: 27617904 [TBL] [Abstract][Full Text] [Related]
3. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952 [TBL] [Abstract][Full Text] [Related]
4. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
5. Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Jiang Z; Sharfstein ST Biotechnol Bioeng; 2008 May; 100(1):189-94. PubMed ID: 18023047 [TBL] [Abstract][Full Text] [Related]
6. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540 [TBL] [Abstract][Full Text] [Related]
7. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines. Ritter A; Voedisch B; Wienberg J; Wilms B; Geisse S; Jostock T; Laux H Biotechnol Bioeng; 2016 May; 113(5):1084-93. PubMed ID: 26523402 [TBL] [Abstract][Full Text] [Related]
8. ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells. Pieper LA; Strotbek M; Wenger T; Olayioye MA; Hausser A Biotechnol Bioeng; 2017 Jun; 114(6):1310-1318. PubMed ID: 28165157 [TBL] [Abstract][Full Text] [Related]
9. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the regulatory subunit of glutamate-cysteine ligase enhances monoclonal antibody production in CHO cells. Orellana CA; Marcellin E; Gray PP; Nielsen LK Biotechnol Bioeng; 2017 Aug; 114(8):1825-1836. PubMed ID: 28436007 [TBL] [Abstract][Full Text] [Related]
11. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Balasubramanian S; Rajendra Y; Baldi L; Hacker DL; Wurm FM Biotechnol Bioeng; 2016 Jun; 113(6):1234-43. PubMed ID: 26616356 [TBL] [Abstract][Full Text] [Related]
12. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Mohan C; Kim YG; Koo J; Lee GM Biotechnol J; 2008 May; 3(5):624-30. PubMed ID: 18293320 [TBL] [Abstract][Full Text] [Related]
13. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
14. mRNA stability and antibody production in CHO cells: improvement through gene optimization. Hung F; Deng L; Ravnikar P; Condon R; Li B; Do L; Saha D; Tsao YS; Merchant A; Liu Z; Shi S Biotechnol J; 2010 Apr; 5(4):393-401. PubMed ID: 20222103 [TBL] [Abstract][Full Text] [Related]
15. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230 [TBL] [Abstract][Full Text] [Related]
16. Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Lee SK; Lee GM Biotechnol Bioeng; 2003 Jun; 82(7):872-6. PubMed ID: 12701155 [TBL] [Abstract][Full Text] [Related]
17. Stable high-level expression of factor VIII in Chinese hamster ovary cells in improved elongation factor-1 alpha-based system. Orlova NA; Kovnir SV; Gabibov AG; Vorobiev II BMC Biotechnol; 2017 Mar; 17(1):33. PubMed ID: 28340620 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of cold-inducible RNA-binding protein increases interferon-gamma production in Chinese-hamster ovary cells. Tan HK; Lee MM; Yap MG; Wang DI Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):247-57. PubMed ID: 17608629 [TBL] [Abstract][Full Text] [Related]
19. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
20. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity. Mahameed M; Tirosh B Biotechnol Bioeng; 2017 Nov; 114(11):2560-2570. PubMed ID: 28627778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]