BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27183196)

  • 41. Keeping it simple, transport mechanism and pH regulation in Na+/H+ exchangers.
    Călinescu O; Paulino C; Kühlbrandt W; Fendler K
    J Biol Chem; 2014 May; 289(19):13168-76. PubMed ID: 24644283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca2+ regulation of ion transport in the Na+/Ca2+ exchanger.
    Hilge M
    J Biol Chem; 2012 Sep; 287(38):31641-9. PubMed ID: 22822067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for Ca2+ regulation in the Na+/Ca2+ exchanger.
    Hilge M; Aelen J; Perrakis A; Vuister GW
    Ann N Y Acad Sci; 2007 Mar; 1099():7-15. PubMed ID: 17347334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pre-steady-state kinetics of Ba-Ca exchange reveals a second electrogenic step involved in Ca2+ translocation by the Na-Ca exchanger.
    Haase A; Hartung K
    Biophys J; 2009 Jun; 96(11):4571-80. PubMed ID: 19486679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystallization and preliminary X-ray crystallographic analysis of Ca2+-free primary Ca2+-sensor of Na+/Ca2+ exchanger.
    Mima M; Kawai C; Paku K; Tomoo K; Ishida T; Sugiyama S; Matsumura H; Kitatani T; Yoshikawa HY; Maki S; Adachi H; Takano K; Murakami S; Inoue T; Mori Y; Kita S; Iwamoto T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Dec; 64(Pt 12):1125-7. PubMed ID: 19052365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the special role of NCX in astrocytes: Translating Na
    Rose CR; Ziemens D; Verkhratsky A
    Cell Calcium; 2020 Mar; 86():102154. PubMed ID: 31901681
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational changes of the Ca(2+) regulatory site of the Na(+)-Ca(2+) exchanger detected by FRET.
    Ottolia M; Philipson KD; John S
    Biophys J; 2004 Aug; 87(2):899-906. PubMed ID: 15298897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The low molecular weight inhibitor of NCX1 interacts with a cytosolic domain that differs from the ion-transport site of the Na/Ca exchanger.
    Shpak C; Hiller R; Shpak B; Boyman L; Khananshvili D
    Biochem Biophys Res Commun; 2004 Nov; 324(4):1346-51. PubMed ID: 15504362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1.
    Xue J; Zeng W; Han Y; John S; Ottolia M; Jiang Y
    Nat Commun; 2023 Oct; 14(1):6181. PubMed ID: 37794011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS.
    de Souza Degenhardt MF; Vitale PAM; Abiko LA; Zacharias M; Sattler M; Oliveira CLP; Salinas RK
    Biophys J; 2021 Sep; 120(17):3664-3675. PubMed ID: 34310942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three Na+/Ca2+ exchanger (NCX) variants are expressed in mouse osteoclasts and mediate calcium transport during bone resorption.
    Li JP; Kajiya H; Okamoto F; Nakao A; Iwamoto T; Okabe K
    Endocrinology; 2007 May; 148(5):2116-25. PubMed ID: 17317768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent structural and functional insights into the family of sodium calcium exchangers.
    Sharma V; O'Halloran DM
    Genesis; 2014 Feb; 52(2):93-109. PubMed ID: 24376088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A common Ca2+-driven interdomain module governs eukaryotic NCX regulation.
    Giladi M; Sasson Y; Fang X; Hiller R; Buki T; Wang YX; Hirsch JA; Khananshvili D
    PLoS One; 2012; 7(6):e39985. PubMed ID: 22768191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions.
    Wu M; Le HD; Wang M; Yurkov V; Omelchenko A; Hnatowich M; Nix J; Hryshko LV; Zheng L
    J Biol Chem; 2010 Jan; 285(4):2554-61. PubMed ID: 19815561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes.
    Weber CR; Ginsburg KS; Philipson KD; Shannon TR; Bers DM
    J Gen Physiol; 2001 Feb; 117(2):119-31. PubMed ID: 11158165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms.
    Giladi M; Lee SY; Ariely Y; Teldan Y; Granit R; Strulovich R; Haitin Y; Chung KY; Khananshvili D
    Sci Rep; 2017 Apr; 7(1):993. PubMed ID: 28428550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a Na(+)-Ca(2+) exchanger in podocytes.
    Fischer KG; Jonas N; Poschenrieder F; Cohen C; Kretzler M; Greiber S; Pavenstädt H
    Nephrol Dial Transplant; 2002 Oct; 17(10):1742-50. PubMed ID: 12270979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inactivation of outward Na(+)-Ca2+ exchange current in guinea-pig ventricular myocytes.
    Matsuoka S; Hilgemann DW
    J Physiol; 1994 May; 476(3):443-58. PubMed ID: 7520059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ionic regulation of the cardiac sodium-calcium exchanger.
    Reeves JP; Condrescu M
    Channels (Austin); 2008; 2(5):322-8. PubMed ID: 18989096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free-Energy Simulations Resolve the Low-Affinity Na
    Setiadi J; Kuyucak S
    Biophys J; 2019 Aug; 117(4):780-789. PubMed ID: 31383357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.