BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27183494)

  • 1. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.
    Bartram J; Mountjoy E; Brooks T; Hancock J; Williamson H; Wright G; Moppett J; Goulden N; Hubank M
    J Mol Diagn; 2016 Jul; 18(4):494-506. PubMed ID: 27183494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput sequencing in acute lymphoblastic leukemia: Follow-up of minimal residual disease and emergence of new clones.
    Salson M; Giraud M; Caillault A; Grardel N; Duployez N; Ferret Y; Duez M; Herbert R; Rocher T; Sebda S; Quief S; Villenet C; Figeac M; Preudhomme C
    Leuk Res; 2017 Feb; 53():1-7. PubMed ID: 27930944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment.
    Logan AC; Gao H; Wang C; Sahaf B; Jones CD; Marshall EL; Buño I; Armstrong R; Fire AZ; Weinberg KI; Mindrinos M; Zehnder JL; Boyd SD; Xiao W; Davis RW; Miklos DB
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21194-9. PubMed ID: 22160699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia.
    Wright G; Watt E; Inglott S; Brooks T; Bartram J; Adams SP
    Pediatr Blood Cancer; 2019 Aug; 66(8):e27787. PubMed ID: 31034760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.
    Ferret Y; Caillault A; Sebda S; Duez M; Grardel N; Duployez N; Villenet C; Figeac M; Preudhomme C; Salson M; Giraud M
    Br J Haematol; 2016 May; 173(3):413-20. PubMed ID: 26898266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Immunoglobulin Heavy Chain Gene Clonality by Next-Generation Sequencing for Minimal Residual Disease Monitoring in B-Lymphoblastic Leukemia.
    Shin S; Hwang IS; Kim J; Lee KA; Lee ST; Choi JR
    Ann Lab Med; 2017 Jul; 37(4):331-335. PubMed ID: 28445014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study.
    Brüggemann M; Kotrová M; Knecht H; Bartram J; Boudjogrha M; Bystry V; Fazio G; Froňková E; Giraud M; Grioni A; Hancock J; Herrmann D; Jiménez C; Krejci A; Moppett J; Reigl T; Salson M; Scheijen B; Schwarz M; Songia S; Svaton M; van Dongen JJM; Villarese P; Wakeman S; Wright G; Cazzaniga G; Davi F; García-Sanz R; Gonzalez D; Groenen PJTA; Hummel M; Macintyre EA; Stamatopoulos K; Pott C; Trka J; Darzentas N; Langerak AW;
    Leukemia; 2019 Sep; 33(9):2241-2253. PubMed ID: 31243313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upgraded Standardized Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma.
    Yao Q; Bai Y; Orfao A; Kumar S; Chim CS
    J Mol Diagn; 2020 May; 22(5):679-684. PubMed ID: 32151713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring.
    Luthra R; Patel KP; Reddy NG; Haghshenas V; Routbort MJ; Harmon MA; Barkoh BA; Kanagal-Shamanna R; Ravandi F; Cortes JE; Kantarjian HM; Medeiros LJ; Singh RR
    Haematologica; 2014 Mar; 99(3):465-73. PubMed ID: 24142997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia.
    Wu D; Sherwood A; Fromm JR; Winter SS; Dunsmore KP; Loh ML; Greisman HA; Sabath DE; Wood BL; Robins H
    Sci Transl Med; 2012 May; 4(134):134ra63. PubMed ID: 22593176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ClonoSEQ assay for the detection of lymphoid malignancies.
    Monter A; Nomdedéu JF
    Expert Rev Mol Diagn; 2019 Jul; 19(7):571-578. PubMed ID: 31179776
    [No Abstract]   [Full Text] [Related]  

  • 12. [A tal-1 deletion as real-time quantitative polymerase chain reaction target for detection of minimal residual disease in T-lineage acute lymphoblastic leukemia].
    Wang L; Zhang LP; Li ZG; Cheng YF; Tian KG; Lu AD
    Zhonghua Er Ke Za Zhi; 2005 Mar; 43(3):170-3. PubMed ID: 15833185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Validation and Implementation of a Measurable Residual Disease Assay for NPM1 in Acute Myeloid Leukemia by Error-Corrected Next-Generation Sequencing.
    Ritterhouse LL; Parilla M; Zhen CJ; Wurst MN; Puranik R; Henderson CM; Joudeh NZ; Hartley MJ; Haridas R; Wanjari P; Furtado LV; Kadri S; Segal JP
    Mol Diagn Ther; 2019 Dec; 23(6):791-802. PubMed ID: 31673932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia.
    Brüggemann M; van der Velden VH; Raff T; Droese J; Ritgen M; Pott C; Wijkhuijs AJ; Gökbuget N; Hoelzer D; van Wering ER; van Dongen JJ; Kneba M
    Leukemia; 2004 Apr; 18(4):709-19. PubMed ID: 14961040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometry and IG/TCR quantitative PCR for minimal residual disease quantitation in acute lymphoblastic leukemia: a French multicenter prospective study on behalf of the FRALLE, EORTC and GRAALL.
    Garand R; Beldjord K; Cavé H; Fossat C; Arnoux I; Asnafi V; Bertrand Y; Boulland ML; Brouzes C; Clappier E; Delabesse E; Fest T; Garnache-Ottou F; Huguet F; Jacob MC; Kuhlein E; Marty-Grès S; Plesa A; Robillard N; Roussel M; Tkaczuk J; Dombret H; Macintyre E; Ifrah N; Béné MC; Baruchel A
    Leukemia; 2013 Feb; 27(2):370-6. PubMed ID: 23070018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia.
    Gaipa G; Basso G; Biondi A; Campana D
    Cytometry B Clin Cytom; 2013; 84(6):359-69. PubMed ID: 23757107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Report on the effects of fragment size, indexing, and read length on HLA sequencing on the Illumina MiSeq.
    Profaizer T; Coonrod EM; Delgado JC; Kumánovics A
    Hum Immunol; 2015 Dec; 76(12):897-902. PubMed ID: 26303189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation sequencing of PTEN mutations for monitoring minimal residual disease in T-cell acute lymphoblastic leukemia.
    Germano G; Valsecchi MG; Buldini B; Cazzaniga G; Zanon C; Silvestri D; Te Kronnie G; Basso G; Paganin M
    Pediatr Blood Cancer; 2020 Jan; 67(1):e28025. PubMed ID: 31571345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error-corrected sequencing strategies enable comprehensive detection of leukemic mutations relevant for diagnosis and minimal residual disease monitoring.
    Crowgey EL; Mahajan N; Wong WH; Gopalakrishnapillai A; Barwe SP; Kolb EA; Druley TE
    BMC Med Genomics; 2020 Mar; 13(1):32. PubMed ID: 32131829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification of immunoglobulin and T-cell receptor gene rearrangements--prerequisite for monitoring of minimal residual disease in Polish acute lymphoblastic leukemia patients based on European standards. Preliminary results].
    Dawidowska M; Derwich K; Szczepański T; Jółkowska J; Witt M; Wachowiak J
    Med Wieku Rozwoj; 2006; 10(1 Pt 2):323-34. PubMed ID: 17028396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.