BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27183706)

  • 1. Development of a floating drug delivery system with superior buoyancy in gastric fluid using hot-melt extrusion coupled with pressurized CO₂.
    Almutairy BK; Alshetaili AS; Ashour EA; Patil H; Tiwari RV; Alshehri SM; Repka MA
    Pharmazie; 2016 Mar; 71(3):128-33. PubMed ID: 27183706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floating hot-melt extruded tablets for gastroretentive controlled drug release system.
    Fukuda M; Peppas NA; McGinity JW
    J Control Release; 2006 Oct; 115(2):121-9. PubMed ID: 16959356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion.
    Malode VN; Paradkar A; Devarajan PV
    Int J Pharm; 2015 Aug; 491(1-2):345-51. PubMed ID: 26142246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Multiple-Unit Floating Drug Delivery System of Clarithromycin: Formulation, in vitro Dissolution by Modified Dissolution Apparatus, in vivo Radiographic Studies in Human Volunteers.
    Reddy AB; Reddy ND
    Drug Res (Stuttg); 2017 Jul; 67(7):412-418. PubMed ID: 28449156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion.
    Vo AQ; Feng X; Pimparade M; Ye X; Kim DW; Martin ST; Repka MA
    Eur J Pharm Sci; 2017 May; 102():71-84. PubMed ID: 28257881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of porous carrier-based floating orlistat microspheres for gastric delivery.
    Jain SK; Agrawal GP; Jain NK
    AAPS PharmSciTech; 2006 Nov; 7(4):90. PubMed ID: 17233542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floating-pulsatile release multiparticulate system for chronopharmacotherapy: effect of some hydrophobic additives on the buoyancy and release behavior of particles.
    Maghsoodi M
    Drug Res (Stuttg); 2014 Jan; 64(1):10-6. PubMed ID: 23950100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, design and manufacture of innovative floating gastroretentive drug delivery systems based on hot-melt extruded tubes.
    Simons FJ; Wagner KG
    Eur J Pharm Biopharm; 2019 Apr; 137():196-208. PubMed ID: 30826475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid.
    Hasçiçek C; Yüksel-Tilkan G; Türkmen B; Ozdemir N
    Acta Pharm; 2011 Sep; 61(3):303-12. PubMed ID: 21945909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation and evaluation of novel coated floating tablets of bergenin and cetirizine dihydrochloride for gastric delivery.
    He S; Li F; Zhou D; Du J; Huang Y
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1280-8. PubMed ID: 22206469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Acetaminophen Soft-Chew Formulation Produced via Hot-Melt Extrusion with In-line Near-Infrared Monitoring as a Process Analytical Technology Tool.
    Xu P; Zhang J; Bandari S; Repka MA
    AAPS PharmSciTech; 2020 Jan; 21(2):37. PubMed ID: 31897804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Optimization of a Wet Granulation Process at Elevated Temperature for a Poorly Compactible Drug Using Twin Screw Extruder for Continuous Manufacturing.
    Meena AK; Desai D; Serajuddin AT
    J Pharm Sci; 2017 Feb; 106(2):589-600. PubMed ID: 27890244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs.
    Batra A; Desai D; Serajuddin ATM
    J Pharm Sci; 2017 Jan; 106(1):140-150. PubMed ID: 27578544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles.
    Streubel A; Siepmann J; Bodmeier R
    J Microencapsul; 2003; 20(3):329-47. PubMed ID: 12881114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.
    Puri V; Brancazio D; Desai PM; Jensen KD; Chun JH; Myerson AS; Trout BL
    J Pharm Sci; 2017 Nov; 106(11):3328-3336. PubMed ID: 28684263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal sintering: a novel technique used in the design, optimization and biopharmaceutical evaluation of propranolol HCl gastric floating tablets.
    Venkata Srikanth M; Songa AS; Nali SR; Battu JR; Kolapalli VR
    Drug Dev Ind Pharm; 2014 Jan; 40(1):33-45. PubMed ID: 23317339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged intragastric drug delivery mediated by Eudragit® E-carrageenan polyelectrolyte matrix tablets.
    Bani-Jaber A; Al-Aani L; Alkhatib H; Al-Khalidi B
    AAPS PharmSciTech; 2011 Mar; 12(1):354-61. PubMed ID: 21302009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen.
    Cao QR; Choi YW; Cui JH; Lee BJ
    J Control Release; 2005 Nov; 108(2-3):351-61. PubMed ID: 16154656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and in vitro evaluation of effervescent gastric floating drug delivery systems of propanolol HCl.
    Meka VS; Songa AS; Nali SR; Battu JR; Kolapalli VR
    Invest Clin; 2012 Mar; 53(1):60-70. PubMed ID: 22524109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl.
    Raut Desai S; Rohera BD
    Drug Dev Ind Pharm; 2014 Mar; 40(3):380-9. PubMed ID: 23369093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.