These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27184069)

  • 41. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.
    Weyda I; Yang L; Vang J; Ahring BK; Lübeck M; Lübeck PS
    J Microbiol Methods; 2017 Apr; 135():26-34. PubMed ID: 28159628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1.
    Bai Y; He S; Zhao G; Chen L; Shi N; Zhou H; Cong H; Zhao Q; Zhu XQ
    Exp Parasitol; 2012 Dec; 132(4):458-64. PubMed ID: 23026454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic characterization of Toxoplasma gondii isolates from China.
    Zhou P; Zhang H; Lin RQ; Zhang DL; Song HQ; Su C; Zhu XQ
    Parasitol Int; 2009 Jun; 58(2):193-5. PubMed ID: 19567233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seroprevalence and genotypes of Toxoplasma gondii isolated from pigs intended for human consumption in Liaoning province, northeastern China.
    Wang D; Liu Y; Jiang T; Zhang G; Yuan G; He J; Su C; Yang N
    Parasit Vectors; 2016 Apr; 9():248. PubMed ID: 27129860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii.
    Liu Q; Wang ZD; Huang SY; Zhu XQ
    Parasit Vectors; 2015 May; 8():292. PubMed ID: 26017718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and genetic characterization of a new Brazilian genotype of Toxoplasma gondii from sheep intended for human consumption.
    Maciel BM; Moura RL; Carvalho FS; Costa EA; Albuquerque GR
    Parasitol Int; 2014 Jun; 63(3):567-70. PubMed ID: 24631791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genotyping of samples from German patients with ocular, cerebral and systemic toxoplasmosis reveals a predominance of Toxoplasma gondii type II.
    Herrmann DC; Maksimov P; Hotop A; Groß U; Däubener W; Liesenfeld O; Pleyer U; Conraths FJ; Schares G
    Int J Med Microbiol; 2014 Oct; 304(7):911-6. PubMed ID: 25037927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. First genetic characterization of Toxoplasma gondii infection in common quails (Coturnix coturnix) intended for human consumption in China.
    Cong W; Ju HL; Zhang XX; Meng QF; Ma JG; Qian AD; Zhu XQ
    Infect Genet Evol; 2017 Apr; 49():14-16. PubMed ID: 28043887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker.
    Behnke MS; Khan A; Sibley LD
    Eukaryot Cell; 2015 Feb; 14(2):140-8. PubMed ID: 25480939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism.
    Krishnan A; Kloehn J; Lunghi M; Chiappino-Pepe A; Waldman BS; Nicolas D; Varesio E; Hehl A; Lourido S; Hatzimanikatis V; Soldati-Favre D
    Cell Host Microbe; 2020 Feb; 27(2):290-306.e11. PubMed ID: 31991093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research.
    Rhee DB; Croken MM; Shieh KR; Sullivan J; Micklem G; Kim K; Golden A
    Database (Oxford); 2015; 2015():bav066. PubMed ID: 26130662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Keep Up the Good (Bench) Work!
    Moreno SNJ
    Trends Parasitol; 2016 Aug; 32(8):579-580. PubMed ID: 27133187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing.
    Yan Q; Fong SS
    Front Microbiol; 2017; 8():2060. PubMed ID: 29123506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene target discovery with network analysis in Toxoplasma gondii.
    Alonso AM; Corvi MM; Diambra L
    Sci Rep; 2019 Jan; 9(1):646. PubMed ID: 30679502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii.
    Roos DS; Donald RG; Morrissette NS; Moulton AL
    Methods Cell Biol; 1994; 45():27-63. PubMed ID: 7707991
    [No Abstract]   [Full Text] [Related]  

  • 58. What new cell biology findings could bring to therapeutics: is it time for a phenome-project in Toxoplasma gondii?
    Meissner M; Klaus K
    Mem Inst Oswaldo Cruz; 2009 Mar; 104(2):185-9. PubMed ID: 19430642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dominique Soldati-Favre: Bringing
    Santos JM; Frénal K
    Front Cell Infect Microbiol; 2022; 12():910611. PubMed ID: 35711657
    [No Abstract]   [Full Text] [Related]  

  • 60. A most formidable arsenal: genetic technologies for building a better mouse.
    Clark JF; Dinsmore CJ; Soriano P
    Genes Dev; 2020 Oct; 34(19-20):1256-1286. PubMed ID: 33004485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.