BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27184108)

  • 1. The protonation state of histidine 111 regulates the aggregation of the evolutionary most conserved region of the human prion protein.
    Fonseca-Ornelas L; Zweckstetter M
    Protein Sci; 2016 Aug; 25(8):1563-7. PubMed ID: 27184108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.
    Honda R
    Angew Chem Int Ed Engl; 2018 May; 57(21):6086-6089. PubMed ID: 29645399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of buried histidine protonation and protein stability in prion misfolding.
    Malevanets A; Chong PA; Hansen DF; Rizk P; Sun Y; Lin H; Muhandiram R; Chakrabartty A; Kay LE; Forman-Kay JD; Wodak SJ
    Sci Rep; 2017 Apr; 7(1):882. PubMed ID: 28408762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Mechanism of Barriers to Interspecies Seeding Transmissibility of Full-Length Prion Protein Amyloid.
    Ma T; Deng J; Ma S; Zhao W; Chang Z; Yu K; Yang J
    Chembiochem; 2019 Nov; 20(21):2757-2766. PubMed ID: 31161647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins.
    Zhang Y; Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy.
    Aucoin D; Xia Y; Theint T; Nadaud PS; Surewicz K; Surewicz WK; Jaroniec CP
    J Struct Biol; 2019 Apr; 206(1):36-42. PubMed ID: 29679649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.
    Krasnoslobodtsev AV; Deckert-Gaudig T; Zhang Y; Deckert V; Lyubchenko YL
    Ultramicroscopy; 2016 Jun; 165():26-33. PubMed ID: 27060278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases.
    Sarnataro D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30304819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation.
    Mukundan V; Maksoudian C; Vogel MC; Chehade I; Katsiotis MS; Alhassan SM; Magzoub M
    Arch Biochem Biophys; 2017 Jan; 613():31-42. PubMed ID: 27818203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion-Like Proteins in Phase Separation and Their Link to Disease.
    Sprunger ML; Jackrel ME
    Biomolecules; 2021 Jul; 11(7):. PubMed ID: 34356638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionarily Conserved Proline Residues Impede the Misfolding of the Mouse Prion Protein by Destabilizing an Aggregation-competent Partially Unfolded Form.
    Pal S; Udgaonkar JB
    J Mol Biol; 2022 Dec; 434(23):167854. PubMed ID: 36228749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Studies of Amyloid Proteins at the Molecular Level.
    Eisenberg DS; Sawaya MR
    Annu Rev Biochem; 2017 Jun; 86():69-95. PubMed ID: 28125289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Cu
    Sakaguchi Y; Nakamura R; Konishi M; Hatakawa Y; Toyoda H; Akizawa T
    Biochem Biophys Res Commun; 2019 Jun; 514(3):798-802. PubMed ID: 31079927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro.
    Honda RP; Kuwata K
    Sci Rep; 2017 Apr; 7(1):562. PubMed ID: 28373719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein.
    Batlle C; Fernández MR; Iglesias V; Ventura S
    FEBS Lett; 2017 Jul; 591(13):1966-1971. PubMed ID: 28542905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.