These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 27184118)
1. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice. Cong X; Doering J; Grange RW; Jiang H Sci Rep; 2016 May; 6():26194. PubMed ID: 27184118 [TBL] [Abstract][Full Text] [Related]
2. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle. Cong X; Doering J; Mazala DA; Chin ER; Grange RW; Jiang H Skelet Muscle; 2016; 6():17. PubMed ID: 27073615 [TBL] [Abstract][Full Text] [Related]
3. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation. Polster A; Nelson BR; Olson EN; Beam KG Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10986-91. PubMed ID: 27621462 [TBL] [Abstract][Full Text] [Related]
4. Stac proteins associate with the critical domain for excitation-contraction coupling in the II-III loop of Ca Polster A; Nelson BR; Papadopoulos S; Olson EN; Beam KG J Gen Physiol; 2018 Apr; 150(4):613-624. PubMed ID: 29467163 [TBL] [Abstract][Full Text] [Related]
5. Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels. Polster A; Perni S; Bichraoui H; Beam KG Proc Natl Acad Sci U S A; 2015 Jan; 112(2):602-6. PubMed ID: 25548159 [TBL] [Abstract][Full Text] [Related]
6. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Nelson BR; Wu F; Liu Y; Anderson DM; McAnally J; Lin W; Cannon SC; Bassel-Duby R; Olson EN Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11881-6. PubMed ID: 23818578 [TBL] [Abstract][Full Text] [Related]
7. STAC3 determines the slow activation kinetics of Ca Tuinte WE; Török E; Mahlknecht I; Tuluc P; Flucher BE; Campiglio M J Cell Physiol; 2022 Nov; 237(11):4197-4214. PubMed ID: 36161458 [TBL] [Abstract][Full Text] [Related]
8. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle. Zhang Y; Cong X; Wang A; Jiang H J Anim Sci; 2014 Aug; 92(8):3284-90. PubMed ID: 24948655 [TBL] [Abstract][Full Text] [Related]
9. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Horstick EJ; Linsley JW; Dowling JJ; Hauser MA; McDonald KK; Ashley-Koch A; Saint-Amant L; Satish A; Cui WW; Zhou W; Sprague SM; Stamm DS; Powell CM; Speer MC; Franzini-Armstrong C; Hirata H; Kuwada JY Nat Commun; 2013; 4():1952. PubMed ID: 23736855 [TBL] [Abstract][Full Text] [Related]
10. STAC3 stably interacts through its C1 domain with Ca Campiglio M; Flucher BE Sci Rep; 2017 Jan; 7():41003. PubMed ID: 28112192 [TBL] [Abstract][Full Text] [Related]
11. Stac3 is a novel regulator of skeletal muscle development in mice. Reinholt BM; Ge X; Cong X; Gerrard DE; Jiang H PLoS One; 2013; 8(4):e62760. PubMed ID: 23626854 [TBL] [Abstract][Full Text] [Related]
12. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes. Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065 [TBL] [Abstract][Full Text] [Related]
13. STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Zaharieva IT; Sarkozy A; Munot P; Manzur A; O'Grady G; Rendu J; Malfatti E; Amthor H; Servais L; Urtizberea JA; Neto OA; Zanoteli E; Donkervoort S; Taylor J; Dixon J; Poke G; Foley AR; Holmes C; Williams G; Holder M; Yum S; Medne L; Quijano-Roy S; Romero NB; Fauré J; Feng L; Bastaki L; Davis MR; Phadke R; Sewry CA; Bönnemann CG; Jungbluth H; Bachmann C; Treves S; Muntoni F Hum Mutat; 2018 Dec; 39(12):1980-1994. PubMed ID: 30168660 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles. Choisy S; Huchet-Cadiou C; Léoty C J Pharmacol Exp Ther; 2000 Sep; 294(3):884-93. PubMed ID: 10945837 [TBL] [Abstract][Full Text] [Related]
15. Multiple Sequence Variants in STAC3 Affect Interactions with Ca Rufenach B; Christy D; Flucher BE; Bui JM; Gsponer J; Campiglio M; Van Petegem F Structure; 2020 Aug; 28(8):922-932.e5. PubMed ID: 32492370 [TBL] [Abstract][Full Text] [Related]
17. Slowing of twitch of dystrophic mouse muscle in partially due to altered activity pattern. Parry DJ; Desypris G Muscle Nerve; 1983; 6(6):397-407. PubMed ID: 6225947 [TBL] [Abstract][Full Text] [Related]
18. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Tanabe T; Beam KG; Adams BA; Niidome T; Numa S Nature; 1990 Aug; 346(6284):567-9. PubMed ID: 2165570 [TBL] [Abstract][Full Text] [Related]
19. Truncation of the carboxyl terminus of the dihydropyridine receptor beta1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes. Sheridan DC; Cheng W; Ahern CA; Mortenson L; Alsammarae D; Vallejo P; Coronado R Biophys J; 2003 Jan; 84(1):220-37. PubMed ID: 12524277 [TBL] [Abstract][Full Text] [Related]
20. Effects of chronic electrostimulation on rat soleus skinned fibers during hindlimb suspension. Furby A; Mounier Y; Stevens L; Leterme D; Falempin M Muscle Nerve; 1993 Jul; 16(7):720-6. PubMed ID: 8505928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]