These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27184430)

  • 1. Production of ω-hydroxy octanoic acid with Escherichia coli.
    Kirtz M; Klebensberger J; Otte KB; Richter SM; Hauer B
    J Biotechnol; 2016 Jul; 230():30-3. PubMed ID: 27184430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana.
    Dehesh K; Jones A; Knutzon DS; Voelker TA
    Plant J; 1996 Feb; 9(2):167-72. PubMed ID: 8820604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Active C
    Hernández Lozada NJ; Lai RY; Simmons TR; Thomas KA; Chowdhury R; Maranas CD; Pfleger BF
    ACS Synth Biol; 2018 Sep; 7(9):2205-2215. PubMed ID: 30064208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression.
    Ziesack M; Rollins N; Shah A; Dusel B; Webster G; Silver PA; Way JC
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the biologic origin of C6-C10-dicarboxylic and C6-C10-omega-1-hydroxy monocarboxylic acids in human and rat with acyl-CoA dehydrogenation deficiencies: in vitro studies on the omega- and omega-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver.
    Gregersen N; Mortensen PB; Kølvraa S
    Pediatr Res; 1983 Oct; 17(10):828-34. PubMed ID: 6634246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
    Feng Y; Zhang Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3173-3182. PubMed ID: 29470618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli.
    Deng X; Chen L; Hei M; Liu T; Feng Y; Yang GY
    Metab Eng; 2020 Sep; 61():24-32. PubMed ID: 32339761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.
    Dehesh K; Edwards P; Hayes T; Cranmer AM; Fillatti J
    Plant Physiol; 1996 Jan; 110(1):203-10. PubMed ID: 8587983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.
    Stefan A; Hochkoeppler A; Ugolini L; Lazzeri L; Conte E
    Biotechnol Prog; 2016; 32(1):26-35. PubMed ID: 26518537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates.
    Chen Y; Reinhardt M; Neris N; Kerns L; Mansell TJ; Jarboe LR
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type II thioesterase improves heterologous biosynthesis of valinomycin in Escherichia coli.
    Li J; Jaitzig J; Theuer L; Legala OE; Süssmuth RD; Neubauer P
    J Biotechnol; 2015 Jan; 193():16-22. PubMed ID: 25449019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
    Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ
    Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.
    Royce LA; Yoon JM; Chen Y; Rickenbach E; Shanks JV; Jarboe LR
    Metab Eng; 2015 May; 29():180-188. PubMed ID: 25839166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli.
    Sung C; Jung E; Choi KY; Bae JH; Kim M; Kim J; Kim EJ; Kim PI; Kim BG
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6667-76. PubMed ID: 25957153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Improvement of fatty acid ethyl ester production by optimizing thioesterase expression].
    Yang L; Zhu Z; Liu A; Lü X
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1681-6. PubMed ID: 24701834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.
    Wu H; San KY
    Biotechnol Bioeng; 2014 Nov; 111(11):2209-19. PubMed ID: 24889416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy.
    Kitazume T; Yamazaki Y; Matsuyama S; Shoun H; Takaya N
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):981-8. PubMed ID: 18512058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions.
    Youngquist JT; Korosh TC; Pfleger BF
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):759-772. PubMed ID: 27738839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel paradigm of fatty acid beta-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli.
    Nie L; Ren Y; Janakiraman A; Smith S; Schulz H
    Biochemistry; 2008 Sep; 47(36):9618-26. PubMed ID: 18702504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress.
    Fu Y; Yoon JM; Jarboe L; Shanks JV
    Appl Microbiol Biotechnol; 2015 May; 99(10):4397-408. PubMed ID: 25620365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.