BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27184666)

  • 1. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation.
    Zhu LZ; Hou YJ; Zhao M; Yang MF; Fu XT; Sun JY; Fu XY; Shao LR; Zhang HF; Fan CD; Gao HL; Sun BL
    Cell Biol Toxicol; 2016 Aug; 32(4):333-45. PubMed ID: 27184666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caudatin Inhibits Human Glioma Cells Growth Through Triggering DNA Damage-Mediated Cell Cycle Arrest.
    Fu XY; Zhang S; Wang K; Yang MF; Fan CD; Sun BL
    Cell Mol Neurobiol; 2015 Oct; 35(7):953-9. PubMed ID: 25860846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mulberry fruit (Moris fructus) extracts induce human glioma cell death in vitro through ROS-dependent mitochondrial pathway and inhibits glioma tumor growth in vivo.
    Jeong JC; Jang SW; Kim TH; Kwon CH; Kim YK
    Nutr Cancer; 2010; 62(3):402-12. PubMed ID: 20358478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caudatin induces cell cycle arrest and caspase-dependent apoptosis in HepG2 cell.
    Fei HR; Chen HL; Xiao T; Chen G; Wang FZ
    Mol Biol Rep; 2012 Jan; 39(1):131-8. PubMed ID: 21553057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myricetin exhibits anti-glioma potential by inducing mitochondrial-mediated apoptosis, cell cycle arrest, inhibition of cell migration and ROS generation.
    Li HG; Chen JX; Xiong JH; Zhu JW
    J BUON; 2016; 21(1):182-90. PubMed ID: 27061547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk.
    Fan CD; Fu XY; Zhang ZY; Cao MZ; Sun JY; Yang MF; Fu XT; Zhao SJ; Shao LR; Zhang HF; Yang XY; Sun BL
    Sci Rep; 2017 Jul; 7(1):6465. PubMed ID: 28743999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylseleninic acid inhibits human glioma growth in vitro and in vivo by triggering ROS-dependent oxidative damage and apoptosis.
    Chen W; Hao P; Song Q; Feng X; Zhao X; Wu J; Gong Z; Zhang J; Fu X; Wang X
    Metab Brain Dis; 2024 Apr; 39(4):625-633. PubMed ID: 38416338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone acetyltransferase inhibitor II induces apoptosis in glioma cell lines via the p53 signaling pathway.
    Xu LX; Li ZH; Tao YF; Li RH; Fang F; Zhao H; Li G; Li YH; Wang J; Feng X; Pan J
    J Exp Clin Cancer Res; 2014 Dec; 33(1):108. PubMed ID: 25523932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiangiogenic properties of caudatin in vitro and in vivo by suppression of VEGF‑VEGFR2‑AKT/FAK signal axis.
    Wang X; Fu X; Zhao S; Fu X; Zhang H; Shao L; Li G; Fan C
    Mol Med Rep; 2017 Dec; 16(6):8937-8943. PubMed ID: 28990104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells.
    Chan CK; Supriady H; Goh BH; Kadir HA
    J Ethnopharmacol; 2015 Jun; 168():291-304. PubMed ID: 25861953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway.
    Liu J; Zhang Y; Chen L; Yu F; Li X; Dan Tao ; Zhao J; Zhou S
    Acta Biochim Biophys Sin (Shanghai); 2017 Jun; 49(6):479-486. PubMed ID: 28449039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress inhibits growth and induces apoptotic cell death in human U251 glioma cells via the caspase-3-dependent pathway.
    Liu XR; Li YQ; Hua C; Li SJ; Zhao G; Song HM; Yu MX; Huang Q
    Eur Rev Med Pharmacol Sci; 2015 Nov; 19(21):4068-75. PubMed ID: 26592828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways.
    Lu DY; Chang CS; Yeh WL; Tang CH; Cheung CW; Leung YM; Liu JF; Wong KL
    Phytomedicine; 2012 Sep; 19(12):1093-100. PubMed ID: 22819448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caudatin inhibits carcinomic human alveolar basal epithelial cell growth and angiogenesis through modulating GSK3β/β-catenin pathway.
    Fei HR; Cui LY; Zhang ZR; Zhao Y; Wang FZ
    J Cell Biochem; 2012 Nov; 113(11):3403-10. PubMed ID: 22678744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pantoprazole Induces Mitochondrial Apoptosis and Attenuates NF-κB Signaling in Glioma Cells.
    Geeviman K; Babu D; Prakash Babu P
    Cell Mol Neurobiol; 2018 Nov; 38(8):1491-1504. PubMed ID: 30302629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of G1 Cell Cycle Arrest in Human Glioma Cells by Salinomycin Through Triggering ROS-Mediated DNA Damage In Vitro and In Vivo.
    Zhao SJ; Wang XJ; Wu QJ; Liu C; Li DW; Fu XT; Zhang HF; Shao LR; Sun JY; Sun BL; Zhai J; Fan CD
    Neurochem Res; 2017 Apr; 42(4):997-1005. PubMed ID: 27995497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honokiol enhances temozolomide-induced apoptotic insults to malignant glioma cells via an intrinsic mitochondrion-dependent pathway.
    Chio CC; Tai YT; Mohanraj M; Liu SH; Yang ST; Chen RM
    Phytomedicine; 2018 Oct; 49():41-51. PubMed ID: 30217261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Mitochondria-Mediated Apoptosis in U251 Cell Cycle Arrest in G1 Stage and Caspase Activation.
    Zhang L; Liang P; Zhang R
    Med Sci Monit; 2015 Nov; 21():3629-33. PubMed ID: 26594875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway.
    Cheng BC; Chen JT; Yang ST; Chio CC; Liu SH; Chen RM
    Int J Oncol; 2017 Mar; 50(3):964-974. PubMed ID: 28197638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways.
    Wu HL; Fu XY; Cao WQ; Xiang WZ; Hou YJ; Ma JK; Wang Y; Fan CD
    J Agric Food Chem; 2019 Feb; 67(8):2212-2219. PubMed ID: 30688446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.