These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27184922)

  • 21. Inhibition of transforming growth factor-β signaling potentiates tumor cell invasion into collagen matrix induced by fibroblast-derived hepatocyte growth factor.
    Oyanagi J; Kojima N; Sato H; Higashi S; Kikuchi K; Sakai K; Matsumoto K; Miyazaki K
    Exp Cell Res; 2014 Aug; 326(2):267-79. PubMed ID: 24780821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation.
    Schmid H; Watton PN; Maurer MM; Wimmer J; Winkler P; Wang YK; Röhrle O; Itskov M
    Biomech Model Mechanobiol; 2010 Jun; 9(3):295-315. PubMed ID: 19943177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 17beta-estradiol regulates the secretion of TGF-beta by cultured human dermal fibroblasts.
    Stevenson S; Nelson LD; Sharpe DT; Thornton MJ
    J Biomater Sci Polym Ed; 2008; 19(8):1097-109. PubMed ID: 18644234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms.
    Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y
    Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
    Zahedmanesh H; Van Oosterwyck H; Lally C
    Comput Methods Biomech Biomed Engin; 2014; 17(8):813-28. PubMed ID: 22967148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and -beta3: mechanoregulatory growth factors?
    Brown RA; Sethi KK; Gwanmesia I; Raemdonck D; Eastwood M; Mudera V
    Exp Cell Res; 2002 Apr; 274(2):310-22. PubMed ID: 11900491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanobiological model of arterial growth and remodeling.
    Keshavarzian M; Meyer CA; Hayenga HN
    Biomech Model Mechanobiol; 2018 Feb; 17(1):87-101. PubMed ID: 28823079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transforming growth factor-beta1 stimulates collagen matrix remodeling through increased adhesive and contractive potential by human renal fibroblasts.
    Kondo S; Kagami S; Urushihara M; Kitamura A; Shimizu M; Strutz F; Müller GA; Kuroda Y
    Biochim Biophys Acta; 2004 Aug; 1693(2):91-100. PubMed ID: 15313011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.
    Menon SN; Hall CL; McCue SW; McElwain DLS
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1743-1763. PubMed ID: 28523375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
    Bellini C; Ferruzzi J; Roccabianca S; Di Martino ES; Humphrey JD
    Ann Biomed Eng; 2014 Mar; 42(3):488-502. PubMed ID: 24197802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candesartan ameliorates arsenic-induced hypertensive vascular remodeling by regularizing angiotensin II and TGF-beta signaling in rats.
    Khuman MW; Harikumar SK; Sadam A; Kesavan M; Susanth VS; Parida S; Singh KP; Sarkar SN
    Toxicology; 2016 Dec; 374():29-41. PubMed ID: 27889505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of TGF-(beta) antagonism by interferon (gamma) and cyclosporine A in lung fibroblasts.
    Eickelberg O; Pansky A; Koehler E; Bihl M; Tamm M; Hildebrand P; Perruchoud AP; Kashgarian M; Roth M
    FASEB J; 2001 Mar; 15(3):797-806. PubMed ID: 11259398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-alpha, and insulin-like growth factor-I.
    Davidson JM; Zoia O; Liu JM
    J Cell Physiol; 1993 Apr; 155(1):149-56. PubMed ID: 8468360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuation of transforming growth factor-β-stimulated collagen production in fibroblasts by quercetin-induced heme oxygenase-1.
    Nakamura T; Matsushima M; Hayashi Y; Shibasaki M; Imaizumi K; Hashimoto N; Shimokata K; Hasegawa Y; Kawabe T
    Am J Respir Cell Mol Biol; 2011 May; 44(5):614-20. PubMed ID: 21216973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall.
    Wang M; Zhao D; Spinetti G; Zhang J; Jiang LQ; Pintus G; Monticone R; Lakatta EG
    Arterioscler Thromb Vasc Biol; 2006 Jul; 26(7):1503-9. PubMed ID: 16690877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor.
    Agocha A; Lee HW; Eghbali-Webb M
    J Mol Cell Cardiol; 1997 Aug; 29(8):2233-44. PubMed ID: 9281454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of fibroblast size/mechanical force down-regulates TGF-β type II receptor: implications for human skin aging.
    Fisher GJ; Shao Y; He T; Qin Z; Perry D; Voorhees JJ; Quan T
    Aging Cell; 2016 Feb; 15(1):67-76. PubMed ID: 26780887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibroblast mechanotransduction network predicts targets for mechano-adaptive infarct therapies.
    Rogers JD; Richardson WJ
    Elife; 2022 Feb; 11():. PubMed ID: 35138248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.