BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 27185881)

  • 41. An acetyltransferase-independent function of Eso1 regulates centromere cohesion.
    Lin SJ; Tapia-Alveal C; Jabado OJ; Germain D; O'Connell MJ
    Mol Biol Cell; 2016 Dec; 27(25):4002-4010. PubMed ID: 27798241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ROCC, a conserved region in cohesin's Mcd1 subunit, is essential for the proper regulation of the maintenance of cohesion and establishment of condensation.
    Eng T; Guacci V; Koshland D
    Mol Biol Cell; 2014 Aug; 25(16):2351-64. PubMed ID: 24966169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication.
    Tóth A; Ciosk R; Uhlmann F; Galova M; Schleiffer A; Nasmyth K
    Genes Dev; 1999 Feb; 13(3):320-33. PubMed ID: 9990856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae.
    Dror V; Winston F
    Mol Cell Biol; 2004 Sep; 24(18):8227-35. PubMed ID: 15340082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sister chromatid cohesion establishment during DNA replication termination.
    Cameron G; Gruszka DT; Gruar R; Xie S; Kaya Ç; Nasmyth KA; Baxter J; Srinivasan M; Yardimci H
    Science; 2024 Apr; 384(6691):119-124. PubMed ID: 38484038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle.
    Borges V; Lehane C; Lopez-Serra L; Flynn H; Skehel M; Rolef Ben-Shahar T; Uhlmann F
    Mol Cell; 2010 Sep; 39(5):677-88. PubMed ID: 20832720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis.
    Yu HG; Koshland D
    Cell; 2005 Nov; 123(3):397-407. PubMed ID: 16269332
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing.
    Orlandi I; Bettiga M; Alberghina L; Nyström T; Vai M
    Biochim Biophys Acta; 2010 May; 1803(5):630-8. PubMed ID: 20211662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A role for the Smc3 hinge domain in the maintenance of sister chromatid cohesion.
    Robison B; Guacci V; Koshland D
    Mol Biol Cell; 2018 Feb; 29(3):339-355. PubMed ID: 29187575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model for ATP hydrolysis-dependent binding of cohesin to DNA.
    Weitzer S; Lehane C; Uhlmann F
    Curr Biol; 2003 Nov; 13(22):1930-40. PubMed ID: 14614818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs.
    Zappulla DC; Maharaj AS; Connelly JJ; Jockusch RA; Sternglanz R
    BMC Mol Biol; 2006 Nov; 7():40. PubMed ID: 17094803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A tDNA establishes cohesion of a neighboring silent chromatin domain.
    Dubey RN; Gartenberg MR
    Genes Dev; 2007 Sep; 21(17):2150-60. PubMed ID: 17785523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms.
    Srinivasan M; Scheinost JC; Petela NJ; Gligoris TG; Wissler M; Ogushi S; Collier JE; Voulgaris M; Kurze A; Chan KL; Hu B; Costanzo V; Nasmyth KA
    Cell; 2018 May; 173(6):1508-1519.e18. PubMed ID: 29754816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cohesin complex: sequence homologies, interaction networks and shared motifs.
    Jones S; Sgouros J
    Genome Biol; 2001; 2(3):RESEARCH0009. PubMed ID: 11276426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wapl controls the dynamic association of cohesin with chromatin.
    Kueng S; Hegemann B; Peters BH; Lipp JJ; Schleiffer A; Mechtler K; Peters JM
    Cell; 2006 Dec; 127(5):955-67. PubMed ID: 17113138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sister chromatid cohesion halts DNA loop expansion.
    Bastié N; Chapard C; Cournac A; Nejmi S; Mboumba H; Gadal O; Thierry A; Beckouët F; Koszul R
    Mol Cell; 2024 Mar; 84(6):1139-1148.e5. PubMed ID: 38452765
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding.
    Hsu HC; Wang CL; Wang M; Yang N; Chen Z; Sternglanz R; Xu RM
    Genes Dev; 2013 Jan; 27(1):64-73. PubMed ID: 23307867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion.
    Rolef Ben-Shahar T; Heeger S; Lehane C; East P; Flynn H; Skehel M; Uhlmann F
    Science; 2008 Jul; 321(5888):563-6. PubMed ID: 18653893
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination.
    Ringel AE; Ryznar R; Picariello H; Huang KL; Lazarus AG; Holmes SG
    PLoS Genet; 2013; 9(10):e1003871. PubMed ID: 24146631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3.
    Chang JF; Hall BE; Tanny JC; Moazed D; Filman D; Ellenberger T
    Structure; 2003 Jun; 11(6):637-49. PubMed ID: 12791253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.