BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27186690)

  • 1. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution.
    Bedabati Chanu L; Gupta A
    Chemosphere; 2016 Aug; 156():407-411. PubMed ID: 27186690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translocation analysis and safety assessment in two water spinach cultivars with distinctive shoot Cd and Pb concentrations.
    Huang B; Xin J; Dai H; Liu A; Zhou W; Liao K
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11565-71. PubMed ID: 25028323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation.
    Weerasinghe A; Ariyawnasa S; Weerasooriya R
    Chemosphere; 2008 Jan; 70(3):521-4. PubMed ID: 17720213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Panicum aquanticum Poir. (Poaceae) for the phytoremediation of aquatic environments contaminated by lead.
    Pires-Lira MF; de Castro EM; Lira JMS; de Oliveira C; Pereira FJ; Pereira MP
    Ecotoxicol Environ Saf; 2020 Apr; 193():110336. PubMed ID: 32092581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.
    Wang KS; Huang LC; Lee HS; Chen PY; Chang SH
    Chemosphere; 2008 Jun; 72(4):666-72. PubMed ID: 18471856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Reductants on Phytoextraction of Chromium (VI) by Ipomoea aquatica.
    Ton SS; Lee MW; Yang YH; Hoi SK; Cheng WC; Wang KS; Chang HH; Chang SH
    Int J Phytoremediation; 2015; 17(1-6):429-36. PubMed ID: 25495933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage suffered by swamp morning glory (Ipomoea aquatica Forsk) exposed to vanadium (V).
    Chen T; Li TQ; Yang JY
    Environ Toxicol Chem; 2016 Mar; 35(3):695-701. PubMed ID: 26329124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential.
    Kumar N; Bauddh K; Dwivedi N; Barman SC; Singh DP
    J Environ Biol; 2012 Sep; 33(5):923-7. PubMed ID: 23734460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ethylenediaminetetraacetic acid on lead uptake and translocation by tumbleweed (salsola kali L.).
    de la Rosa G; Peralta-Videa JR; Cruz-Jimenez G; Duarte-Gardea M; Martinez-Martinez A; Cano-Aguilera I; Sharma NC; Sahi SV; Gardea-Torresdey JL
    Environ Toxicol Chem; 2007 May; 26(5):1033-9. PubMed ID: 17521152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water spinach (Ipomoea aquatic Forsk.) reduced the absorption of heavy metals in an in vitro bio-mimicking model system.
    Yang UJ; Yoon SR; Chung JH; Kim YJ; Park KH; Park TS; Shim SM
    Food Chem Toxicol; 2012 Oct; 50(10):3862-6. PubMed ID: 22841954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica.
    Kurade MB; Xiong JQ; Govindwar SP; Roh HS; Saratale GD; Jeon BH; Lim H
    Chemosphere; 2019 Jun; 225():696-704. PubMed ID: 30904757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.).
    Wang J; Yuan J; Yang Z; Huang B; Zhou Y; Xin J; Gong Y; Yu H
    J Agric Food Chem; 2009 Oct; 57(19):8942-9. PubMed ID: 19739670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pb uptake, accumulation, subcellular distribution in a Pb-accumulating ecotype of Sedum alfredii (Hance).
    He B; Yang XE; Ni WZ; Wei YZ; Ye HB
    J Zhejiang Univ Sci; 2003; 4(4):474-9. PubMed ID: 12861626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of lead toxicity in Erica andevalensis as an alternative species for revegetation of contaminated soils.
    Mingorance MD; Leidi EO; Valdés B; Rossini Oliva S
    Int J Phytoremediation; 2012 Feb; 14(2):174-85. PubMed ID: 22567703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of selected heavy metals (Pb, Cu, Ni, and Cd) in the aquatic medium on the restoration potential and accumulation in the stem cuttings of the terrestrial plant, Talinum triangulare Linn.
    Rajkumar K; Sivakumar S; Senthilkumar P; Prabha D; Subbhuraam CV; Song YC
    Ecotoxicology; 2009 Oct; 18(7):952-60. PubMed ID: 19590954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach.
    Göthberg A; Greger M; Holm K; Bengtsson BE
    J Environ Qual; 2004; 33(4):1247-55. PubMed ID: 15254106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different strategies for lead detoxification in dwarf bamboo tissues.
    Jiang M; Cai X; Liao J; Yang Y; Chen Q; Gao S; Yu X; Luo Z; Lei T; Lv B; Liu S
    Ecotoxicol Environ Saf; 2020 Apr; 193():110329. PubMed ID: 32088553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of iron plaque on antibiotic uptake and metabolism in water spinach (Ipomoea aquatic Forsk.) grown in hydroponic culture.
    Tang J; Wang P; Xie Z; Wang Z; Hu B
    J Hazard Mater; 2021 Sep; 417():125981. PubMed ID: 33975166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.
    Li M; Wu YJ; Yu ZL; Sheng GP; Yu HQ
    Water Res; 2009 Mar; 43(5):1247-56. PubMed ID: 19147171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.