BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27186791)

  • 1. Arsenic Speciation in Bituminous Coal Fly Ash and Transformations in Response to Redox Conditions.
    Deonarine A; Kolker A; Foster AL; Doughten MW; Holland JT; Bailoo JD
    Environ Sci Technol; 2016 Jun; 50(11):6099-106. PubMed ID: 27186791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes.
    Su T; Wang J
    Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal release and speciation changes during wet aging of coal fly ashes.
    Catalano JG; Huhmann BL; Luo Y; Mitnick EH; Slavney A; Giammar DE
    Environ Sci Technol; 2012 Nov; 46(21):11804-12. PubMed ID: 23035817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.
    Wang Y; Tsang DC
    J Environ Sci (China); 2013 Nov; 25(11):2291-8. PubMed ID: 24552058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms.
    Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H
    Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.
    Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB
    Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS).
    Liu G; Cai Y; Hernandez D; Schrlau J; Allen M
    Chemosphere; 2016 May; 151():138-44. PubMed ID: 26933905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.
    Huggins FE; Senior CL; Chu P; Ladwig K; Huffman GP
    Environ Sci Technol; 2007 May; 41(9):3284-9. PubMed ID: 17539538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of redox conditions on aqueous-solid partitioning of arsenic and selenium in a closed coal ash impoundment.
    Wang X; Garrabrants AC; Chen Z; van der Sloot HA; Brown KG; Qiu Q; Delapp RC; Hensel B; Kosson DS
    J Hazard Mater; 2022 Apr; 428():128255. PubMed ID: 35042166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of arsenic(V) onto fly ash: a speciation-based approach.
    Wang J; Wang T; Burken JG; Chusuei CC; Ban H; Ladwig K; Huang CP
    Chemosphere; 2008 Jun; 72(3):381-8. PubMed ID: 18396313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of major and trace elements leached from coal fly ash and the kinetics involved.
    Hailu SL; McCrindle RI; Seopela MP; Combrinck S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.
    Khodadoust AP; Theis TL; Murarka IP; Naithani P; Babaeivelni K
    Environ Monit Assess; 2013 Dec; 185(12):10339-49. PubMed ID: 23877575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.
    Zhang K; Zhang D; Zhang K
    Water Sci Technol; 2016; 73(8):1954-62. PubMed ID: 27120650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost.
    Tsang DC; Yip AC; Olds WE; Weber PA
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10194-204. PubMed ID: 24859701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution behavior of selenium from coal fly ash particles for the development of an acid-washing process.
    Kashiwakura S; Ohno H; Kumagai Y; Kubo H; Matsubae K; Nagasaka T
    Chemosphere; 2011 Oct; 85(4):598-602. PubMed ID: 21784503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.
    Asaoka S; Hayakawa S; Kim KH; Takeda K; Katayama M; Yamamoto T
    J Colloid Interface Sci; 2012 Jul; 377(1):284-90. PubMed ID: 22487226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.
    Zhou C; Liu G; Wang X; Qi C; Hu Y
    Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in bulk and microscale yttrium speciation in coal combustion fly ash.
    Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H
    Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.