These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27186791)
1. Arsenic Speciation in Bituminous Coal Fly Ash and Transformations in Response to Redox Conditions. Deonarine A; Kolker A; Foster AL; Doughten MW; Holland JT; Bailoo JD Environ Sci Technol; 2016 Jun; 50(11):6099-106. PubMed ID: 27186791 [TBL] [Abstract][Full Text] [Related]
2. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes. Su T; Wang J Chemosphere; 2011 Nov; 85(8):1368-74. PubMed ID: 21880348 [TBL] [Abstract][Full Text] [Related]
3. Metal release and speciation changes during wet aging of coal fly ashes. Catalano JG; Huhmann BL; Luo Y; Mitnick EH; Slavney A; Giammar DE Environ Sci Technol; 2012 Nov; 46(21):11804-12. PubMed ID: 23035817 [TBL] [Abstract][Full Text] [Related]
4. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents. Wang Y; Tsang DC J Environ Sci (China); 2013 Nov; 25(11):2291-8. PubMed ID: 24552058 [TBL] [Abstract][Full Text] [Related]
5. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms. Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244 [TBL] [Abstract][Full Text] [Related]
6. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664 [TBL] [Abstract][Full Text] [Related]
7. Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS). Liu G; Cai Y; Hernandez D; Schrlau J; Allen M Chemosphere; 2016 May; 151():138-44. PubMed ID: 26933905 [TBL] [Abstract][Full Text] [Related]
8. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants. Huggins FE; Senior CL; Chu P; Ladwig K; Huffman GP Environ Sci Technol; 2007 May; 41(9):3284-9. PubMed ID: 17539538 [TBL] [Abstract][Full Text] [Related]
9. The influence of redox conditions on aqueous-solid partitioning of arsenic and selenium in a closed coal ash impoundment. Wang X; Garrabrants AC; Chen Z; van der Sloot HA; Brown KG; Qiu Q; Delapp RC; Hensel B; Kosson DS J Hazard Mater; 2022 Apr; 428():128255. PubMed ID: 35042166 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of arsenic(V) onto fly ash: a speciation-based approach. Wang J; Wang T; Burken JG; Chusuei CC; Ban H; Ladwig K; Huang CP Chemosphere; 2008 Jun; 72(3):381-8. PubMed ID: 18396313 [TBL] [Abstract][Full Text] [Related]
11. Speciation of major and trace elements leached from coal fly ash and the kinetics involved. Hailu SL; McCrindle RI; Seopela MP; Combrinck S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099 [TBL] [Abstract][Full Text] [Related]
12. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
13. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities. Khodadoust AP; Theis TL; Murarka IP; Naithani P; Babaeivelni K Environ Monit Assess; 2013 Dec; 185(12):10339-49. PubMed ID: 23877575 [TBL] [Abstract][Full Text] [Related]
14. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash. Zhang K; Zhang D; Zhang K Water Sci Technol; 2016; 73(8):1954-62. PubMed ID: 27120650 [TBL] [Abstract][Full Text] [Related]
15. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Tsang DC; Yip AC; Olds WE; Weber PA Environ Sci Pollut Res Int; 2014 Sep; 21(17):10194-204. PubMed ID: 24859701 [TBL] [Abstract][Full Text] [Related]
16. Dissolution behavior of selenium from coal fly ash particles for the development of an acid-washing process. Kashiwakura S; Ohno H; Kumagai Y; Kubo H; Matsubae K; Nagasaka T Chemosphere; 2011 Oct; 85(4):598-602. PubMed ID: 21784503 [TBL] [Abstract][Full Text] [Related]
17. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash. Asaoka S; Hayakawa S; Kim KH; Takeda K; Katayama M; Yamamoto T J Colloid Interface Sci; 2012 Jul; 377(1):284-90. PubMed ID: 22487226 [TBL] [Abstract][Full Text] [Related]
18. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal. Zhou C; Liu G; Wang X; Qi C; Hu Y Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608 [TBL] [Abstract][Full Text] [Related]
19. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835 [TBL] [Abstract][Full Text] [Related]
20. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]