BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27186791)

  • 21. The leaching characteristics of selenium from coal fly ashes.
    Wang T; Wang J; Burken JG; Ban H; Ladwig K
    J Environ Qual; 2007; 36(6):1784-92. PubMed ID: 17965381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates.
    Sterling RO; Helble JJ
    Chemosphere; 2003 Jun; 51(10):1111-9. PubMed ID: 12718977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a leaching test framework for coal fly ash accounting for environmental conditions.
    Zandi M; Russell NV
    Environ Monit Assess; 2007 Aug; 131(1-3):509-26. PubMed ID: 17171257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.
    Bednar AJ; Averett DE; Seiter JM; Lafferty B; Jones WT; Hayes CA; Chappell MA; Clarke JU; Steevens JA
    Chemosphere; 2013 Sep; 92(11):1563-70. PubMed ID: 23706374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selenium speciation in coal ash spilled at the Tennessee Valley Authority Kingston site.
    Liu YT; Chen TY; Mackebee WG; Ruhl L; Vengosh A; Hsu-Kim H
    Environ Sci Technol; 2013 Dec; 47(24):14001-9. PubMed ID: 24266628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.
    Goodarzi F; Huggins FE
    J Environ Monit; 2001 Feb; 3(1):1-6. PubMed ID: 11253001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching characteristics of selected South African fly ashes: effect of pH on the release of major and trace species.
    Gitari WM; Fatoba OO; Petrik LF; Vadapalli VR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):206-20. PubMed ID: 19123102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrotron-based XANES speciation of chromium in the oxy-fuel fly ash collected from lab-scale drop-tube furnace.
    Jiao F; Wijaya N; Zhang L; Ninomiya Y; Hocking R
    Environ Sci Technol; 2011 Aug; 45(15):6640-6. PubMed ID: 21668013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of biogeochemical redox oscillations on arsenic release from legacy mine tailings.
    Liu Y; Root RA; Abramson N; Fan L; Sun J; Liu C; Chorover J
    Geochim Cosmochim Acta; 2023 Nov; 360():192-206. PubMed ID: 37928745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings.
    Hammond CM; Root RA; Maier RM; Chorover J
    Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uranium speciation in coal bottom ash investigated via X-ray absorption fine structure and X-ray photoelectron spectra.
    Sun Y; Wu M; Zheng L; Wang B; Wang Y
    J Environ Sci (China); 2018 Dec; 74():88-94. PubMed ID: 30340678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations.
    Fu B; Hower JC; Li S; Huang Y; Zhang Y; Hu H; Liu H; Zhou J; Zhang S; Liu J; Yao H
    J Hazard Mater; 2021 Aug; 415():125610. PubMed ID: 33730644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump.
    Eze CP; Nyale SM; Akinyeye RO; Gitari WM; Akinyemi SA; Fatoba OO; Petrik LF
    J Environ Manage; 2013 Nov; 129():479-92. PubMed ID: 24013557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Understandings of Rare Earth Element (REE) Speciation in Coal Fly Ashes and Implication for REE Extractability.
    Liu P; Huang R; Tang Y
    Environ Sci Technol; 2019 May; 53(9):5369-5377. PubMed ID: 30912650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term leaching of As, Cd, Mo, Pb, and Zn from coal fly ash in column test.
    Lange CN; Flues M; Hiromoto G; Boscov MEG; Camargo IMC
    Environ Monit Assess; 2019 Sep; 191(10):602. PubMed ID: 31478102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash.
    Fu B; Hower JC; Dai S; Mardon SM; Liu G
    ACS Omega; 2018 Dec; 3(12):17637-17645. PubMed ID: 31458363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact assessment of fly ash on ground water quality: An experimental study using batch leaching tests.
    Dandautiya R; Singh AP; Kundu S
    Waste Manag Res; 2018 Jul; 36(7):624-634. PubMed ID: 29848219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of organic substrate and Fe oxides transformation on the mobility of arsenic by biotic reductive dissolution under repetitive redox conditions.
    Park S; Kim SH; Chung H; An J; Nam K
    Chemosphere; 2022 Oct; 305():135431. PubMed ID: 35738406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.