These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27186990)
1. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni2MnGa. Phatak C; Heinonen O; De Graef M; Petford-Long A Nano Lett; 2016 Jul; 16(7):4141-8. PubMed ID: 27186990 [TBL] [Abstract][Full Text] [Related]
2. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Tokunaga Y; Yu XZ; White JS; Rønnow HM; Morikawa D; Taguchi Y; Tokura Y Nat Commun; 2015 Jul; 6():7638. PubMed ID: 26134284 [TBL] [Abstract][Full Text] [Related]
3. Observation of Robust Néel Skyrmions in Metallic PtMnGa. Srivastava AK; Devi P; Sharma AK; Ma T; Deniz H; Meyerheim HL; Felser C; Parkin SSP Adv Mater; 2020 Feb; 32(7):e1904327. PubMed ID: 31880023 [TBL] [Abstract][Full Text] [Related]
4. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Woo S; Litzius K; Krüger B; Im MY; Caretta L; Richter K; Mann M; Krone A; Reeve RM; Weigand M; Agrawal P; Lemesh I; Mawass MA; Fischer P; Kläui M; Beach GS Nat Mater; 2016 May; 15(5):501-6. PubMed ID: 26928640 [TBL] [Abstract][Full Text] [Related]
5. Strain-Induced Reversible Motion of Skyrmions at Room Temperature. Liu C; Wang J; He W; Zhang C; Zhang S; Yuan S; Hou Z; Qin M; Xu Y; Gao X; Peng Y; Liu K; Qiu ZQ; Liu JM; Zhang X ACS Nano; 2024 Jan; 18(1):761-769. PubMed ID: 38127497 [TBL] [Abstract][Full Text] [Related]
6. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering. Zhang S; Petford-Long AK; Phatak C Sci Rep; 2016 Aug; 6():31248. PubMed ID: 27507196 [TBL] [Abstract][Full Text] [Related]
7. Dynamical magnetoelectric phenomena of multiferroic skyrmions. Mochizuki M; Seki S J Phys Condens Matter; 2015 Dec; 27(50):503001. PubMed ID: 26624202 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn Saha R; Srivastava AK; Ma T; Jena J; Werner P; Kumar V; Felser C; Parkin SSP Nat Commun; 2019 Nov; 10(1):5305. PubMed ID: 31757968 [TBL] [Abstract][Full Text] [Related]
9. Magnetic skyrmions and their manipulations in a 2D multiferroic CuCrP Liu M; Wan TL; Dou K; Zhang L; Sun W; Jiang J; Ma Y; Gu Y; Kou L Phys Chem Chem Phys; 2024 Feb; 26(7):6189-6195. PubMed ID: 38305045 [TBL] [Abstract][Full Text] [Related]
10. Creation of skyrmions in van der Waals ferromagnet Fe Yang M; Li Q; Chopdekar RV; Dhall R; Turner J; Carlström JD; Ophus C; Klewe C; Shafer P; N'Diaye AT; Choi JW; Chen G; Wu YZ; Hwang C; Wang F; Qiu ZQ Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917619 [TBL] [Abstract][Full Text] [Related]
11. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Pollard SD; Garlow JA; Yu J; Wang Z; Zhu Y; Yang H Nat Commun; 2017 Mar; 8():14761. PubMed ID: 28281542 [TBL] [Abstract][Full Text] [Related]
12. Realization of Isolated and High-Density Skyrmions at Room Temperature in Uncompensated Synthetic Antiferromagnets. Chen R; Gao Y; Zhang X; Zhang R; Yin S; Chen X; Zhou X; Zhou Y; Xia J; Zhou Y; Wang S; Pan F; Zhang Y; Song C Nano Lett; 2020 May; 20(5):3299-3305. PubMed ID: 32282217 [TBL] [Abstract][Full Text] [Related]
13. Switching Intrinsic Magnetic Skyrmions with Controllable Magnetic Anisotropy in van der Waals Multiferroic Heterostructures. Wang ZQ; Xue F; Qiu L; Wang Z; Wu R; Hou Y Nano Lett; 2024 Apr; 24(14):4117-4123. PubMed ID: 38509030 [TBL] [Abstract][Full Text] [Related]
14. Giant Topological Hall Effect and Superstable Spontaneous Skyrmions below 330 K in a Centrosymmetric Complex Noncollinear Ferromagnet NdMn Wang S; Zeng Q; Liu D; Zhang H; Ma L; Xu G; Liang Y; Zhang Z; Wu H; Che R; Han X; Huang Q ACS Appl Mater Interfaces; 2020 May; 12(21):24125-24132. PubMed ID: 32363848 [TBL] [Abstract][Full Text] [Related]
15. Transformation from Magnetic Soliton to Skyrmion in a Monoaxial Chiral Magnet. Li L; Song D; Wang W; Zheng F; Kovács A; Tian M; Dunin-Borkowski RE; Du H Adv Mater; 2023 Apr; 35(16):e2209798. PubMed ID: 36573473 [TBL] [Abstract][Full Text] [Related]
16. Observation of skyrmions in a multiferroic material. Seki S; Yu XZ; Ishiwata S; Tokura Y Science; 2012 Apr; 336(6078):198-201. PubMed ID: 22499941 [TBL] [Abstract][Full Text] [Related]
17. Regulating magnetic skyrmions in multiferroic monolayer MnOBr. Hou C; Sun Y; Lu Y; Li Z; Ni J Nanoscale; 2024 Oct; 16(41):19276-19283. PubMed ID: 39354809 [TBL] [Abstract][Full Text] [Related]
18. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nayak AK; Kumar V; Ma T; Werner P; Pippel E; Sahoo R; Damay F; Rößler UK; Felser C; Parkin SSP Nature; 2017 Aug; 548(7669):561-566. PubMed ID: 28846999 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous Topological States and Their Mutual Transformations in a Rare-Earth Ferrimagnet. Zuo S; Qiao K; Zhang Y; Li Z; Zhao T; Jiang C; Shen B Adv Sci (Weinh); 2023 Jan; 10(3):e2205574. PubMed ID: 36403248 [TBL] [Abstract][Full Text] [Related]
20. Stimulated Nucleation of Skyrmions in a Centrosymmetric Magnet. Wang B; Wu PK; Bagués Salguero N; Zheng Q; Yan J; Randeria M; McComb DW ACS Nano; 2021 Aug; 15(8):13495-13503. PubMed ID: 34374281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]