BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27186993)

  • 1. Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish (Danio rerio) Embryos.
    Vong LB; Kobayashi M; Nagasaki Y
    Mol Pharm; 2016 Sep; 13(9):3091-7. PubMed ID: 27186993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos.
    Shashni B; Tamaoki J; Kobayashi M; Nagasaki Y
    Acta Biomater; 2023 Mar; 159():367-381. PubMed ID: 36640953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the in vivo antioxidative activity of redox nanoparticles by using a developing chicken egg as an alternative animal model.
    Abe C; Uto Y; Kawasaki A; Noguchi C; Tanaka R; Yoshitomi T; Nagasaki Y; Endo Y; Hori H
    J Control Release; 2014 May; 182():67-72. PubMed ID: 24637467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice.
    Vong LB; Tomita T; Yoshitomi T; Matsui H; Nagasaki Y
    Gastroenterology; 2012 Oct; 143(4):1027-36.e3. PubMed ID: 22771506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidative Nanoparticles Significantly Enhance Therapeutic Efficacy of an Antibacterial Therapy against Listeria monocytogenes Infection.
    Ikeda Y; Shoji K; Feliciano CP; Saito S; Nagasaki Y
    Mol Pharm; 2018 Mar; 15(3):1126-1132. PubMed ID: 29455535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles.
    Yoshitomi T; Hirayama A; Nagasaki Y
    Biomaterials; 2011 Nov; 32(31):8021-8. PubMed ID: 21816462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model.
    Sarkar P; Lite C; Kumar P; Pasupuleti M; Saraswathi NT; Arasu MV; Al-Dhabi NA; Arshad A; Arockiaraj J
    Int J Biol Macromol; 2021 Jan; 166():641-653. PubMed ID: 33137391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Design of New Cancer Nanotherapeutics Which Controls Active Gaseous Molecules in Vivo].
    Nagasaki Y
    Yakugaku Zasshi; 2018; 138(7):911-918. PubMed ID: 29962468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.
    Bhushan B; Nandhagopal S; Rajesh Kannan R; Gopinath P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():375-86. PubMed ID: 27388966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma.
    Takahashi T; Marushima A; Nagasaki Y; Hirayama A; Muroi A; Puentes S; Mujagic A; Ishikawa E; Matsumura A
    J Trauma Acute Care Surg; 2020 May; 88(5):677-685. PubMed ID: 32039974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection of Coral Larvae from Thermally Induced Oxidative Stress by Redox Nanoparticles.
    Motone K; Takagi T; Aburaya S; Aoki W; Miura N; Minakuchi H; Takeyama H; Nagasaki Y; Shinzato C; Ueda M
    Mar Biotechnol (NY); 2018 Aug; 20(4):542-548. PubMed ID: 29705864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-sensitive radical-containing-nanoparticle (RNP) for the L-band-EPR imaging of low pH circumstances.
    Yoshitomi T; Suzuki R; Mamiya T; Matsui H; Hirayama A; Nagasaki Y
    Bioconjug Chem; 2009 Sep; 20(9):1792-8. PubMed ID: 19685867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of NSAID-induced small intestinal inflammation by orally administered redox nanoparticles.
    Sha S; Vong LB; Chonpathompikunlert P; Yoshitomi T; Matsui H; Nagasaki Y
    Biomaterials; 2013 Nov; 34(33):8393-400. PubMed ID: 23896000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer.
    Thangavel S; Yoshitomi T; Sakharkar MK; Nagasaki Y
    J Control Release; 2015 Jul; 209():110-9. PubMed ID: 25912409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles.
    Pichla M; Bartosz G; Pieńkowska N; Sadowska-Bartosz I
    Anal Biochem; 2020 May; 597():113698. PubMed ID: 32222539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.
    Zhao X; Wang S; Wu Y; You H; Lv L
    Aquat Toxicol; 2013 Jul; 136-137():49-59. PubMed ID: 23643724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer.
    Vong LB; Yoshitomi T; Matsui H; Nagasaki Y
    Biomaterials; 2015 Jul; 55():54-63. PubMed ID: 25934452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae.
    Fang Q; Shi X; Zhang L; Wang Q; Wang X; Guo Y; Zhou B
    J Hazard Mater; 2015; 283():897-904. PubMed ID: 25464334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio).
    Chen TH; Lin CC; Meng PJ
    J Hazard Mater; 2014 Jul; 277():134-40. PubMed ID: 24424259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.