These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27187004)

  • 21. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures.
    Ke Y; Liu Y; Zhang J; Yan H
    J Am Chem Soc; 2006 Apr; 128(13):4414-21. PubMed ID: 16569019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA.
    Majumder U; Rangnekar A; Gothelf KV; Reif JH; LaBean TH
    J Am Chem Soc; 2011 Mar; 133(11):3843-5. PubMed ID: 21355587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small Circular DNA Molecules as Triangular Scaffolds for the Growth of 3D Single Crystals.
    Wang Y; Guo X; Kou B; Zhang L; Xiao SJ
    Biomolecules; 2020 May; 10(6):. PubMed ID: 32466440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA lattice growth with single, double, and triple double-crossover boundaries by stepwise self-assembly.
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Park SH
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36881902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covalent tethering of protruding arms for addressable DNA nanostructures.
    SaccĂ  B; Niemeyer CM
    Small; 2011 Oct; 7(20):2887-98. PubMed ID: 21901826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA double-crossover molecules.
    Fu TJ; Seeman NC
    Biochemistry; 1993 Apr; 32(13):3211-20. PubMed ID: 8461289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of multi-stranded RNA motifs into lattices and tubular structures.
    Stewart JM; Subramanian HKK; Franco E
    Nucleic Acids Res; 2017 May; 45(9):5449-5457. PubMed ID: 28204562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ternary and senary representations using DNA double-crossover tiles.
    Kim B; Jo S; Son J; Kim J; Kim MH; Hwang SU; Dugasani SR; Kim BD; Liu WK; Kim MK; Park SH
    Nanotechnology; 2014 Mar; 25(10):105601. PubMed ID: 24532021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly of RNA Nanostructures from Double-Crossover Tiles.
    Stewart JM; Subramanian HKK; Franco E
    Methods Mol Biol; 2022; 2433():293-302. PubMed ID: 34985752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: the effect on mechanical properties.
    Dohno C; Makishi S; Nakatani K; Contera S
    Nanoscale; 2017 Mar; 9(9):3051-3058. PubMed ID: 28186523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sturdier DNA nanotubes via ligation.
    O'Neill P; Rothemund PW; Kumar A; Fygenson DK
    Nano Lett; 2006 Jul; 6(7):1379-83. PubMed ID: 16834415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals.
    Shen W; Liu Q; Ding B; Shen Z; Zhu C; Mao C
    Org Biomol Chem; 2016 Jul; 14(30):7187-90. PubMed ID: 27404049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combinatorial self-assembly of DNA nanostructures.
    Lund K; Liu Y; Yan H
    Org Biomol Chem; 2006 Sep; 4(18):3402-3. PubMed ID: 17036130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facilitation of DNA self-assembly by relieving the torsional strains between building blocks.
    Shen W; Liu Q; Ding B; Zhu C; Shen Z; Seeman NC
    Org Biomol Chem; 2017 Jan; 15(2):465-469. PubMed ID: 27924995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.
    He Y; Ye T; Su M; Zhang C; Ribbe AE; Jiang W; Mao C
    Nature; 2008 Mar; 452(7184):198-201. PubMed ID: 18337818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
    Kim J; Ha TH; Park SH
    Nanoscale; 2015 Aug; 7(29):12336-42. PubMed ID: 26147712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembly of Complex DNA Tessellations by Using Low-Symmetry Multi-arm DNA Tiles.
    Zhang F; Jiang S; Li W; Hunt A; Liu Y; Yan H
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8860-3. PubMed ID: 27276237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed enzymatic activation of 1-D DNA tiles.
    Garg S; Chandran H; Gopalkrishnan N; LaBean TH; Reif J
    ACS Nano; 2015 Feb; 9(2):1072-9. PubMed ID: 25625898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat-resistant DNA tile arrays constructed by template-directed photoligation through 5-carboxyvinyl-2'-deoxyuridine.
    Tagawa M; Shohda K; Fujimoto K; Sugawara T; Suyama A
    Nucleic Acids Res; 2007; 35(21):e140. PubMed ID: 17982178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.
    Shi X; Chen C; Li X; Song T; Chen Z; Zhang Z; Wang Y
    Soft Matter; 2015 Nov; 11(43):8484-92. PubMed ID: 26367111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.