These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 27187200)

  • 1. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data.
    Chen EZ; Li H
    Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data.
    Zhang X; Guo B; Yi N
    PLoS One; 2020; 15(11):e0242073. PubMed ID: 33166356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A logistic normal multinomial regression model for microbiome compositional data analysis.
    Xia F; Chen J; Fung WK; Li H
    Biometrics; 2013 Dec; 69(4):1053-63. PubMed ID: 24128059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative binomial mixed models for analyzing microbiome count data.
    Zhang X; Mallick H; Tang Z; Zhang L; Cui X; Benson AK; Yi N
    BMC Bioinformatics; 2017 Jan; 18(1):4. PubMed ID: 28049409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An omnibus test for differential distribution analysis of microbiome sequencing data.
    Chen J; King E; Deek R; Wei Z; Yu Y; Grill D; Ballman K; Stegle O
    Bioinformatics; 2018 Feb; 34(4):643-651. PubMed ID: 29040451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MarZIC: A Marginal Mediation Model for Zero-Inflated Compositional Mediators with Applications to Microbiome Data.
    Wu Q; O'Malley J; Datta S; Gharaibeh RZ; Jobin C; Karagas MR; Coker MO; Hoen AG; Christensen BC; Madan JC; Li Z
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A marginalized two-part Beta regression model for microbiome compositional data.
    Chai H; Jiang H; Lin L; Liu L
    PLoS Comput Biol; 2018 Jul; 14(7):e1006329. PubMed ID: 30036363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint modeling of zero-inflated longitudinal proportions and time-to-event data with application to a gut microbiome study.
    Hu J; Wang C; Blaser MJ; Li H
    Biometrics; 2022 Dec; 78(4):1686-1698. PubMed ID: 34213763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MZINBVA: variational approximation for multilevel zero-inflated negative-binomial models for association analysis in microbiome surveys.
    Liu T; Xu P; Du Y; Lu H; Zhao H; Wang T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gmcoda: Graphical model for multiple compositional vectors in microbiome studies.
    Fang H
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37975866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small-sample kernel association test for correlated data with application to microbiome association studies.
    Zhan X; Xue L; Zheng H; Plantinga A; Wu MC; Schaid DJ; Zhao N; Chen J
    Genet Epidemiol; 2018 Dec; 42(8):772-782. PubMed ID: 30218543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch effects correction for microbiome data with Dirichlet-multinomial regression.
    Dai Z; Wong SH; Yu J; Wei Y
    Bioinformatics; 2019 Mar; 35(5):807-814. PubMed ID: 30816927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data.
    Zhang X; Yi N
    Bioinformatics; 2020 Apr; 36(8):2345-2351. PubMed ID: 31904815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general framework for association analysis of microbial communities on a taxonomic tree.
    Tang ZZ; Chen G; Alekseyenko AV; Li H
    Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis.
    Zhang X; Yi N
    BMC Bioinformatics; 2020 Oct; 21(1):488. PubMed ID: 33126862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data.
    Wang C; Hu J; Blaser MJ; Li H
    Bioinformatics; 2020 Jan; 36(2):347-355. PubMed ID: 31329243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse least trimmed squares regression with compositional covariates for high-dimensional data.
    Monti GS; Filzmoser P
    Bioinformatics; 2021 Nov; 37(21):3805-3814. PubMed ID: 34358286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data.
    Li Z; Lee K; Karagas MR; Madan JC; Hoen AG; O'Malley AJ; Li H
    Stat Biosci; 2018 Dec; 10(3):587-608. PubMed ID: 30923584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis.
    Tang ZZ; Chen G
    Biostatistics; 2019 Oct; 20(4):698-713. PubMed ID: 29939212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.