These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Direct interaction network inference for compositional data via codaloss. Chen L; He S; Zhai Y; Deng M J Bioinform Comput Biol; 2020 Dec; 18(6):2050037. PubMed ID: 33106076 [TBL] [Abstract][Full Text] [Related]
43. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances. Tang ZZ; Chen G; Alekseyenko AV Bioinformatics; 2016 Sep; 32(17):2618-25. PubMed ID: 27197815 [TBL] [Abstract][Full Text] [Related]
44. A joint modeling approach for longitudinal microbiome data improves ability to detect microbiome associations with disease. Luna PN; Mansbach JM; Shaw CA PLoS Comput Biol; 2020 Dec; 16(12):e1008473. PubMed ID: 33315858 [TBL] [Abstract][Full Text] [Related]
45. A small-sample multivariate kernel machine test for microbiome association studies. Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040 [TBL] [Abstract][Full Text] [Related]
46. ARZIMM: A Novel Analytic Platform for the Inference of Microbial Interactions and Community Stability from Longitudinal Microbiome Study. He L; Wang C; Hu J; Gao Z; Falcone E; Holland SM; Blaser MJ; Li H Front Genet; 2022; 13():777877. PubMed ID: 35281829 [TBL] [Abstract][Full Text] [Related]
47. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies. Xu L; Paterson AD; Xu W Genet Epidemiol; 2017 Apr; 41(3):221-232. PubMed ID: 28111783 [TBL] [Abstract][Full Text] [Related]
48. fastCCLasso: a fast and efficient algorithm for estimating correlation matrix from compositional data. Zhang S; Fang H; Hu T Bioinformatics; 2024 May; 40(5):. PubMed ID: 38730540 [TBL] [Abstract][Full Text] [Related]
49. Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations. Sun H; Huang X; Huo B; Tan Y; He T; Jiang X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561307 [TBL] [Abstract][Full Text] [Related]
50. Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data. Xu L; Paterson AD; Turpin W; Xu W PLoS One; 2015; 10(7):e0129606. PubMed ID: 26148172 [TBL] [Abstract][Full Text] [Related]
51. Clustering on Human Microbiome Sequencing Data: A Distance-Based Unsupervised Learning Model. Yang D; Xu W Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33092203 [TBL] [Abstract][Full Text] [Related]
52. LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control. Hu Y; Satten GA; Hu YJ Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122788119. PubMed ID: 35867822 [TBL] [Abstract][Full Text] [Related]
53. Testing latent classes in gut microbiome data using generalized Poisson regression models. Qiao X; He H; Sun L; Bai S; Ye P Stat Med; 2024 Jan; 43(1):102-124. PubMed ID: 37921025 [TBL] [Abstract][Full Text] [Related]
54. NetCoMi: network construction and comparison for microbiome data in R. Peschel S; Müller CL; von Mutius E; Boulesteix AL; Depner M Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33264391 [TBL] [Abstract][Full Text] [Related]
55. A novel normalization and differential abundance test framework for microbiome data. Ma Y; Luo Y; Jiang H Bioinformatics; 2020 Jul; 36(13):3959-3965. PubMed ID: 32311021 [TBL] [Abstract][Full Text] [Related]
56. A GLM-based zero-inflated generalized Poisson factor model for analyzing microbiome data. Chi J; Ye J; Zhou Y Front Microbiol; 2024; 15():1394204. PubMed ID: 38873138 [TBL] [Abstract][Full Text] [Related]
57. A maximum-type microbial differential abundance test with application to high-dimensional microbiome data analyses. Li Z; Yu X; Guo H; Lee T; Hu J Front Cell Infect Microbiol; 2022; 12():988717. PubMed ID: 36389165 [TBL] [Abstract][Full Text] [Related]
58. CCLasso: correlation inference for compositional data through Lasso. Fang H; Huang C; Zhao H; Deng M Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598 [TBL] [Abstract][Full Text] [Related]
59. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals. Koh H; Zhao N Microbiome; 2020 May; 8(1):63. PubMed ID: 32393397 [TBL] [Abstract][Full Text] [Related]
60. An empirical Bayes approach to normalization and differential abundance testing for microbiome data. Liu T; Zhao H; Wang T BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]