These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 27187200)

  • 81. Functional response regression model on correlated longitudinal microbiome sequencing data.
    Chen B; Xu W
    Stat Methods Med Res; 2022 Feb; 31(2):361-371. PubMed ID: 34866471
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Zero-Inflated Beta Regression for Differential Abundance Analysis with Metagenomics Data.
    Peng X; Li G; Liu Z
    J Comput Biol; 2016 Feb; 23(2):102-110. PubMed ID: 26675626
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A model for paired-multinomial data and its application to analysis of data on a taxonomic tree.
    Shi P; Li H
    Biometrics; 2017 Dec; 73(4):1266-1278. PubMed ID: 28369713
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Compositional analysis of microbiome data using the linear decomposition model (LDM).
    Hu YJ; Satten GA
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930883
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comparing statistical methods for analyzing skewed longitudinal count data with many zeros: an example of smoking cessation.
    Xie H; Tao J; McHugo GJ; Drake RE
    J Subst Abuse Treat; 2013 Jul; 45(1):99-108. PubMed ID: 23453482
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A statistical model for describing and simulating microbial community profiles.
    Ma S; Ren B; Mallick H; Moon YS; Schwager E; Maharjan S; Tickle TL; Lu Y; Carmody RN; Franzosa EA; Janson L; Huttenhower C
    PLoS Comput Biol; 2021 Sep; 17(9):e1008913. PubMed ID: 34516542
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A latent allocation model for the analysis of microbial composition and disease.
    Abe K; Hirayama M; Ohno K; Shimamura T
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):519. PubMed ID: 30598099
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Negative binomial factor regression with application to microbiome data analysis.
    Mishra AK; Müller CL
    Stat Med; 2022 Jul; 41(15):2786-2803. PubMed ID: 35466418
    [TBL] [Abstract][Full Text] [Related]  

  • 89. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities.
    Wagner BD; Grunwald GK; Zerbe GO; Mikulich-Gilbertson SK; Robertson CE; Zemanick ET; Harris JK
    Front Microbiol; 2018; 9():1037. PubMed ID: 29872428
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A two-part mixed-effects model for analyzing clustered time-to-event data with clumping at zero.
    Zhao J; Zhao Y; Xiang L; Khanal V; Binns CW; Lee AH
    Comput Methods Programs Biomed; 2020 Apr; 187():105196. PubMed ID: 31786451
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Generalized linear models with linear constraints for microbiome compositional data.
    Lu J; Shi P; Li H
    Biometrics; 2019 Mar; 75(1):235-244. PubMed ID: 30039859
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A Bayesian nonparametric analysis for zero-inflated multivariate count data with application to microbiome study.
    Shuler K; Verbanic S; Chen IA; Lee J
    J R Stat Soc Ser C Appl Stat; 2021 Aug; 70(4):961-979. PubMed ID: 37440868
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced Feature Selection for Microbiome Data using FLORAL: Scalable Log-ratio Lasso Regression.
    Fei T; Funnell T; Waters NR; Raj SS; Sadeghi K; Dai A; Miltiadous O; Shouval R; Lv M; Peled JU; Ponce DM; Perales MA; Gönen M; van den Brink MRM
    bioRxiv; 2023 Dec; ():. PubMed ID: 37205350
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.
    Zhao N; Chen J; Carroll IM; Ringel-Kulka T; Epstein MP; Zhou H; Zhou JJ; Ringel Y; Li H; Wu MC
    Am J Hum Genet; 2015 May; 96(5):797-807. PubMed ID: 25957468
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions.
    Yang L; Chen J
    Microbiome; 2022 Aug; 10(1):130. PubMed ID: 35986393
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Learning a mixture of microbial networks using minorization-maximization.
    Tavakoli S; Yooseph S
    Bioinformatics; 2019 Jul; 35(14):i23-i30. PubMed ID: 31510709
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A Novel Sparse Compositional Technique Reveals Microbial Perturbations.
    Martino C; Morton JT; Marotz CA; Thompson LR; Tripathi A; Knight R; Zengler K
    mSystems; 2019; 4(1):. PubMed ID: 30801021
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A strategy for differential abundance analysis of sparse microbiome data with group-wise structured zeros.
    Abegaz F; Abedini D; White F; Guerrieri A; Zancarini A; Dong L; Westerhuis JA; van Eeuwijk F; Bouwmeester H; Smilde AK
    Sci Rep; 2024 May; 14(1):12433. PubMed ID: 38816496
    [TBL] [Abstract][Full Text] [Related]  

  • 99. MK-BMC: a Multi-Kernel framework with Boosted distance metrics for Microbiome data for Classification.
    Xu H; Wang T; Miao Y; Qian M; Yang Y; Wang S
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38200571
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Multivariable association discovery in population-scale meta-omics studies.
    Mallick H; Rahnavard A; McIver LJ; Ma S; Zhang Y; Nguyen LH; Tickle TL; Weingart G; Ren B; Schwager EH; Chatterjee S; Thompson KN; Wilkinson JE; Subramanian A; Lu Y; Waldron L; Paulson JN; Franzosa EA; Bravo HC; Huttenhower C
    PLoS Comput Biol; 2021 Nov; 17(11):e1009442. PubMed ID: 34784344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.