These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27187273)

  • 1. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.
    Mohamed MF; Hollfelder F
    Biochim Biophys Acta; 2013 Jan; 1834(1):417-24. PubMed ID: 22885024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer.
    Kamerlin SC
    J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases.
    Luo J; van Loo B; Kamerlin SC
    Proteins; 2012 Apr; 80(4):1211-26. PubMed ID: 22275090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester.
    van Loo B; Schober M; Valkov E; Heberlein M; Bornberg-Bauer E; Faber K; Hyvönen M; Hollfelder F
    J Mol Biol; 2018 Mar; 430(7):1004-1023. PubMed ID: 29458126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.
    Andrews LD; Zalatan JG; Herschlag D
    Biochemistry; 2014 Nov; 53(43):6811-9. PubMed ID: 25299936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase.
    van Loo B; Berry R; Boonyuen U; Mohamed MF; Golicnik M; Hengge AC; Hollfelder F
    Biochemistry; 2019 Mar; 58(10):1363-1378. PubMed ID: 30810299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic promiscuity in Pseudomonas aeruginosa arylsulfatase as an example of chemistry-driven protein evolution.
    Luo J; van Loo B; Kamerlin SC
    FEBS Lett; 2012 Jun; 586(11):1622-30. PubMed ID: 22673572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.
    Srinivasan B; Marks H; Mitra S; Smalley DM; Skolnick J
    Biochem J; 2016 Jul; 473(14):2165-77. PubMed ID: 27208174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope effects in the study of phosphoryl and sulfuryl transfer reactions.
    Hengge AC
    Acc Chem Res; 2002 Feb; 35(2):105-12. PubMed ID: 11851388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes.
    Thakur D; Pandit SB
    J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme promiscuity: a mechanistic and evolutionary perspective.
    Khersonsky O; Tawfik DS
    Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic scaffolds for phosphoryl group transfer.
    Allen KN; Dunaway-Mariano D
    Curr Opin Struct Biol; 2016 Dec; 41():172-179. PubMed ID: 27526404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.
    Pabis A; Kamerlin SC
    Curr Opin Struct Biol; 2016 Apr; 37():14-21. PubMed ID: 26716576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.