These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 27187336)
21. Synthesis of antiproliferative 13α-d-homoestrones via Lewis acid-promoted one-pot Prins-Ritter reactions of d-secosteroidal δ-alkenyl-aldehydes. Huber J; Wölfling J; Schneider G; Ocsovszki I; Varga M; Zupkó I; Mernyák E Steroids; 2015 Oct; 102():76-84. PubMed ID: 26210211 [TBL] [Abstract][Full Text] [Related]
22. Copper-catalyzed tandem azide-alkyne cycloaddition, Ullmann type C-N coupling, and intramolecular direct arylation. Pericherla K; Jha A; Khungar B; Kumar A Org Lett; 2013 Sep; 15(17):4304-7. PubMed ID: 23947761 [TBL] [Abstract][Full Text] [Related]
23. Stereocontrolled synthesis of the four possible 3-methoxy and 3-benzyloxy-16-triazolyl-methyl-estra-17-ol hybrids and their antiproliferative activities. Kiss A; Wölfling J; Mernyák E; Frank É; Benke Z; Ashkan Senobar Tahaei S; Zupkó I; Mahó S; Schneider G Steroids; 2019 Dec; 152():108500. PubMed ID: 31536732 [TBL] [Abstract][Full Text] [Related]
24. A click approach to novel D-ring-substituted 16α-triazolylestrone derivatives and characterization of their antiproliferative properties. Molnár J; Frank É; Minorics R; Kádár Z; Ocsovszki I; Schönecker B; Wölfling J; Zupkó I PLoS One; 2015; 10(2):e0118104. PubMed ID: 25692552 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives: their evaluation as potential PDE 4B inhibitors possessing cytotoxic properties against cancer cells. Praveena KS; Durgadas S; Suresh Babu N; Akkenapally S; Ganesh Kumar C; Deora GS; Murthy NY; Mukkanti K; Pal S Bioorg Chem; 2014 Apr; 53():8-14. PubMed ID: 24463218 [TBL] [Abstract][Full Text] [Related]
26. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. Yoo EJ; Ahlquist M; Bae I; Sharpless KB; Fokin VV; Chang S J Org Chem; 2008 Jul; 73(14):5520-8. PubMed ID: 18557650 [TBL] [Abstract][Full Text] [Related]
27. Copper Catalysis in Living Systems and In Situ Drug Synthesis. Clavadetscher J; Hoffmann S; Lilienkampf A; Mackay L; Yusop RM; Rider SA; Mullins JJ; Bradley M Angew Chem Int Ed Engl; 2016 Dec; 55(50):15662-15666. PubMed ID: 27860120 [TBL] [Abstract][Full Text] [Related]
28. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: triazole linkages from amines. Beckmann HS; Wittmann V Org Lett; 2007 Jan; 9(1):1-4. PubMed ID: 17192070 [TBL] [Abstract][Full Text] [Related]
29. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents. Ellanki AR; Islam A; Rama VS; Pulipati RP; Rambabu D; Krishna GR; Reddy CM; Mukkanti K; Vanaja GR; Kalle AM; Kumar KS; Pal M Bioorg Med Chem Lett; 2012 May; 22(10):3455-9. PubMed ID: 22516283 [TBL] [Abstract][Full Text] [Related]
30. Stereoselective synthesis of the four 16-hydroxymethyl-3-methoxy- and 16-hydroxymethyl-3-benzyloxy-13α-estra-1,3,5(10)-trien-17-ol isomers and their antiproliferative activities. Kiss A; Mernyák E; Wölfling J; Sinka I; Zupkó I; Schneider G Steroids; 2018 Jun; 134():67-77. PubMed ID: 29501755 [TBL] [Abstract][Full Text] [Related]
31. Quick and highly efficient copper-catalyzed cycloaddition of organic azides with terminal alkynes. Wang D; Zhao M; Liu X; Chen Y; Li N; Chen B Org Biomol Chem; 2012 Jan; 10(2):229-31. PubMed ID: 22024945 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of 5-halogenated 1,2,3-triazoles under stoichiometric Cu(I)-mediated azide-alkyne cycloaddition (CuAAC or 'Click Chemistry'). Goyard D; Praly JP; Vidal S Carbohydr Res; 2012 Nov; 362():79-83. PubMed ID: 23124169 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of bioactive and fluorescent pyridine-triazole-coumarin peptidomimetics through sequential click-multicomponent reactions. Soumya TV; Muhammed Ajmal C; Bahulayan D Bioorg Med Chem Lett; 2017 Feb; 27(3):450-455. PubMed ID: 28062094 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Mareddy J; Nallapati SB; Anireddy J; Devi YP; Mangamoori LN; Kapavarapu R; Pal S Bioorg Med Chem Lett; 2013 Dec; 23(24):6721-7. PubMed ID: 24215890 [TBL] [Abstract][Full Text] [Related]
35. A convergent synthesis of alkyne-azide cycloaddition derivatives of 4-α,β-2-propyne podophyllotoxin depicting potent cytotoxic activity. Zilla MK; Nayak D; Vishwakarma RA; Sharma PR; Goswami A; Ali A Eur J Med Chem; 2014 Apr; 77():47-55. PubMed ID: 24607588 [TBL] [Abstract][Full Text] [Related]
36. Copper catalysed azide-alkyne cycloaddition (CuAAC) in liquid ammonia. Ji P; Atherton JH; Page MI Org Biomol Chem; 2012 Oct; 10(39):7965-9. PubMed ID: 22930181 [TBL] [Abstract][Full Text] [Related]
37. Copper(I) acetate-catalyzed azide-alkyne cycloaddition for highly efficient preparation of 1-(pyridin-2-yl)-1,2,3-triazoles. Zhang Q; Wang X; Cheng C; Zhu R; Liu N; Hu Y Org Biomol Chem; 2012 Apr; 10(14):2847-54. PubMed ID: 22388558 [TBL] [Abstract][Full Text] [Related]
38. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425 [TBL] [Abstract][Full Text] [Related]