These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27187544)

  • 1. Hydrogel Adhesion with Wrinkle Formation by Spatial Control of Polymer Networks.
    Kato M; Tsuboi Y; Kikuchi A; Asoh TA
    J Phys Chem B; 2016 Jun; 120(22):5042-6. PubMed ID: 27187544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel Adhesion by Wrinkling Films.
    Kato M; Asoh TA; Uyama H
    Macromol Rapid Commun; 2019 Dec; 40(23):e1900434. PubMed ID: 31631434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic fabrication of an active and selective wrinkle surface on hydrogels.
    Kato M; Asoh TA; Uyama H
    Chem Commun (Camb); 2019 Apr; 55(29):4170-4173. PubMed ID: 30892314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry Control of Wrinkle Structures Aligned on Hydrogel Surfaces.
    Kato M; Kashihara Y; Asoh TA; Uyama H
    Langmuir; 2020 Feb; 36(6):1467-1473. PubMed ID: 31999120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Damage-Resistant Physical Hydrogel Adhesion.
    Li Q; Wang L; Liu Q; Hong W; Yang C
    Front Robot AI; 2021; 8():666343. PubMed ID: 33937350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers.
    Kimura M; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2007; 18(5):623-40. PubMed ID: 17550663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic Adhesion of Conductive Hydrogels.
    Asoh TA; Nakamura M; Shoji T; Tsuboi Y; Uyama H
    Macromol Rapid Commun; 2020 Jun; 41(12):e2000169. PubMed ID: 32400894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesive Hydrogel System Based on the Intercalation of Anionic Substituents into Layered Double Hydroxides.
    Tamesue S; Yasuda K; Endo T
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29925-29932. PubMed ID: 30088756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Wrinkling of Gradient Metal Films.
    Schedl AE; Neuber C; Fery A; Schmidt HW
    Langmuir; 2018 Nov; 34(47):14249-14253. PubMed ID: 30388014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micrometric Wrinkled Patterns Spontaneously Formed on Hydrogel Thin Films via Argon Plasma Exposure.
    González-Henríquez CM; Veliz-Silva DF; Sarabia-Vallejos MA; Del Campo-García A; Rodríguez-Hernández J
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks.
    Yin L; Fei L; Cui F; Tang C; Yin C
    Biomaterials; 2007 Feb; 28(6):1258-66. PubMed ID: 17118443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Travelling Wave Generation of Wrinkles on the Hydrogel Surfaces.
    Kashihara Y; Asoh TA; Uyama H
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100848. PubMed ID: 35020236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization.
    Wei W; Hu X; Qi X; Yu H; Liu Y; Li J; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Jan; 125():1-11. PubMed ID: 25460596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrinkling of random and regular semiflexible polymer networks.
    Müller P; Kierfeld J
    Phys Rev Lett; 2014 Mar; 112(9):094303. PubMed ID: 24655259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel semi-interpenetrating hydrogel networks with enhanced mechanical properties and thermoresponsive engineered drug delivery, designed as bioactive endotracheal tube biomaterials.
    Jones DS; Andrews GP; Caldwell DL; Lorimer C; Gorman SP; McCoy CP
    Eur J Pharm Biopharm; 2012 Nov; 82(3):563-71. PubMed ID: 22940251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical line-defect patterns in wrinkled surfaces.
    Glatz BA; Tebbe M; Kaoui B; Aichele R; Kuttner C; Schedl AE; Schmidt HW; Zimmermann W; Fery A
    Soft Matter; 2015 May; 11(17):3332-9. PubMed ID: 25803776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.
    Liu J; Li Q; Su Y; Yue Q; Gao B
    Carbohydr Polym; 2014 Jul; 107():232-40. PubMed ID: 24702940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.