BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27187571)

  • 1. Spatial segregation of heterochromatin: Uncovering functionality in a multicellular organism.
    Cabianca DS; Gasser SM
    Nucleus; 2016 May; 7(3):301-7. PubMed ID: 27187571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei.
    Cabianca DS; Muñoz-Jiménez C; Kalck V; Gaidatzis D; Padeken J; Seeber A; Askjaer P; Gasser SM
    Nature; 2019 May; 569(7758):734-739. PubMed ID: 31118512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos.
    Gonzalez-Sandoval A; Towbin BD; Kalck V; Cabianca DS; Gaidatzis D; Hauer MH; Geng L; Wang L; Yang T; Wang X; Zhao K; Gasser SM
    Cell; 2015 Dec; 163(6):1333-47. PubMed ID: 26607792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of heterochromatin subnuclear localization.
    Towbin BD; Gonzalez-Sandoval A; Gasser SM
    Trends Biochem Sci; 2013 Jul; 38(7):356-63. PubMed ID: 23746617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of chromatin segregation to the nuclear periphery in
    Gonzalez-Sandoval A; Gasser SM
    Worm; 2016; 5(3):e1190900. PubMed ID: 27695653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation and sequestration of heterochromatin during development: delivered on 7 September 2012 at the 37th FEBS Congress in Sevilla, Spain.
    Gonzalez-Sandoval A; Towbin BD; Gasser SM
    FEBS J; 2013 Jul; 280(14):3212-9. PubMed ID: 23648132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin.
    Li F; Huarte M; Zaratiegui M; Vaughn MW; Shi Y; Martienssen R; Cande WZ
    Cell; 2008 Oct; 135(2):272-83. PubMed ID: 18957202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells.
    Stachecka J; Kolodziejski PA; Noak M; Szczerbal I
    Sci Rep; 2021 Jan; 11(1):1325. PubMed ID: 33446668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.
    Harr JC; Gonzalez-Sandoval A; Gasser SM
    EMBO Rep; 2016 Feb; 17(2):139-55. PubMed ID: 26792937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery.
    Towbin BD; González-Aguilera C; Sack R; Gaidatzis D; Kalck V; Meister P; Askjaer P; Gasser SM
    Cell; 2012 Aug; 150(5):934-47. PubMed ID: 22939621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confining euchromatin/heterochromatin territory: jumonji crosses the line.
    Tamaru H
    Genes Dev; 2010 Jul; 24(14):1465-78. PubMed ID: 20634313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone epigenetic marks in heterochromatin and euchromatin of the Chagas' disease vector, Triatoma infestans.
    Alvarenga EM; Rodrigues VL; Moraes AS; Naves LS; Mondin M; Felisbino MB; Mello ML
    Acta Histochem; 2016 May; 118(4):401-12. PubMed ID: 27079857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin.
    Sarcinella E; Zuzarte PC; Lau PN; Draker R; Cheung P
    Mol Cell Biol; 2007 Sep; 27(18):6457-68. PubMed ID: 17636032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone modification in constitutive heterochromatin versus unexpressed euchromatin in human cells.
    Jiang G; Yang F; Sanchez C; Ehrlich M
    J Cell Biochem; 2004 Oct; 93(2):286-300. PubMed ID: 15368356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells.
    Festenstein R; Pagakis SN; Hiragami K; Lyon D; Verreault A; Sekkali B; Kioussis D
    Science; 2003 Jan; 299(5607):719-21. PubMed ID: 12560554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries.
    Noma K ; Allis CD; Grewal SI
    Science; 2001 Aug; 293(5532):1150-5. PubMed ID: 11498594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic aspects of differentiation.
    Arney KL; Fisher AG
    J Cell Sci; 2004 Sep; 117(Pt 19):4355-63. PubMed ID: 15331660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content.
    Cao HX; Vu GT; Wang W; Messing J; Schubert I
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():120-4. PubMed ID: 24853858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unreeling the chromatin thread: a genomic perspective on organization around the periphery of the Arabidopsis nucleus.
    Barneche F; Baroux C
    Genome Biol; 2017 May; 18(1):97. PubMed ID: 28535814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner.
    Towbin BD; Meister P; Pike BL; Gasser SM
    Cold Spring Harb Symp Quant Biol; 2010; 75():555-65. PubMed ID: 21467137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.