BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27187795)

  • 1. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters.
    Tolar BB; Ross MJ; Wallsgrove NJ; Liu Q; Aluwihare LI; Popp BN; Hollibaugh JT
    ISME J; 2016 Nov; 10(11):2605-2619. PubMed ID: 27187795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.
    Kalanetra KM; Bano N; Hollibaugh JT
    Environ Microbiol; 2009 Sep; 11(9):2434-45. PubMed ID: 19601959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic ocean in summer and winter.
    Christman GD; Cottrell MT; Popp BN; Gier E; Kirchman DL
    Appl Environ Microbiol; 2011 Mar; 77(6):2026-34. PubMed ID: 21239542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments.
    Zheng Y; Hou L; Liu M; Lu M; Zhao H; Yin G; Zhou J
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8351-63. PubMed ID: 23108528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
    Santoro AE; Casciotti KL; Francis CA
    Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia oxidizers in the sea-surface microlayer of a coastal marine inlet.
    Wong SK; Ijichi M; Kaneko R; Kogure K; Hamasaki K
    PLoS One; 2018; 13(8):e0202636. PubMed ID: 30125317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea.
    De Corte D; Yokokawa T; Varela MM; Agogué H; Herndl GJ
    ISME J; 2009 Feb; 3(2):147-58. PubMed ID: 18818711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight.
    Liu Q; Tolar BB; Ross MJ; Cheek JB; Sweeney CM; Wallsgrove NJ; Popp BN; Hollibaugh JT
    ISME J; 2018 Jun; 12(6):1473-1485. PubMed ID: 29445129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.
    Smith JM; Casciotti KL; Chavez FP; Francis CA
    ISME J; 2014 Aug; 8(8):1704-14. PubMed ID: 24553472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands.
    Sims A; Horton J; Gajaraj S; McIntosh S; Miles RJ; Mueller R; Reed R; Hu Z
    Water Res; 2012 Sep; 46(13):4121-9. PubMed ID: 22673339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters.
    Williams TJ; Long E; Evans F; Demaere MZ; Lauro FM; Raftery MJ; Ducklow H; Grzymski JJ; Murray AE; Cavicchioli R
    ISME J; 2012 Oct; 6(10):1883-900. PubMed ID: 22534610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annual nitrification dynamics in a seasonally ice-covered lake.
    Massé S; Botrel M; Walsh DA; Maranger R
    PLoS One; 2019; 14(3):e0213748. PubMed ID: 30893339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.
    Niu J; Kasuga I; Kurisu F; Furumai H; Shigeeda T; Takahashi K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):729-42. PubMed ID: 26463999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the distribution of marine and coastal ammonia-oxidizing archaea and bacteria using a quantitative approach.
    Mosier AC; Francis CA
    Methods Enzymol; 2011; 486():205-21. PubMed ID: 21185437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary.
    Santoro AE; Francis CA; de Sieyes NR; Boehm AB
    Environ Microbiol; 2008 Apr; 10(4):1068-79. PubMed ID: 18266758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities.
    Tolar BB; Wallsgrove NJ; Popp BN; Hollibaugh JT
    Environ Microbiol; 2017 Dec; 19(12):4838-4850. PubMed ID: 27422798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring.
    Kataoka T; Suzuki K; Irino T; Yamamoto M; Higashi S; Liu H
    Arch Microbiol; 2018 Mar; 200(2):329-342. PubMed ID: 29143851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges.
    Radax R; Hoffmann F; Rapp HT; Leininger S; Schleper C
    Environ Microbiol; 2012 Apr; 14(4):909-23. PubMed ID: 22176665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia.
    Caffrey JM; Bano N; Kalanetra K; Hollibaugh JT
    ISME J; 2007 Nov; 1(7):660-2. PubMed ID: 18043673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea.
    Berg C; Vandieken V; Thamdrup B; Jürgens K
    ISME J; 2015 Jun; 9(6):1319-32. PubMed ID: 25423026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.