BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27187891)

  • 1. Bremsstrahlung enhancement in electron probe microanalysis for homogeneous samples using Monte Carlo simulation.
    Petaccia M; Segui S; Castellano G
    J Microsc; 2016 Nov; 264(2):153-158. PubMed ID: 27187891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo Simulation of Characteristic Secondary Fluorescence in Electron Probe Microanalysis of Homogeneous Samples Using the Splitting Technique.
    Petaccia M; Segui S; Castellano G
    Microsc Microanal; 2015 Jun; 21(3):753-8. PubMed ID: 25980545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Fluorescence Correction for Characteristic and Bremsstrahlung X-Rays Using Monte Carlo X-ray Depth Distributions Applied to Bulk and Multilayer Materials.
    Yuan Y; Demers H; Rudinsky S; Gauvin R
    Microsc Microanal; 2019 Feb; 25(1):92-104. PubMed ID: 30869578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral sensitivity in electron probe microanalysis studied by Monte Carlo simulations involving fluorescence enhancements.
    Petaccia M; Castellano G
    J Microsc; 2018 May; 270(2):136-141. PubMed ID: 29178425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Speed Matrix Corrections for Quantitative X-ray Microanalysis Based on Monte Carlo Simulated K-Ratio Intensities.
    Donovan J; Pinard P; Demers H
    Microsc Microanal; 2019 Jun; 25(3):735-742. PubMed ID: 30973124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The secondary X-ray fluorescence and absorption near the interface of multi-material: case of EDS microanalysis.
    Zoukel A; Khouchaf L
    Micron; 2014 Dec; 67():81-89. PubMed ID: 25086233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo.
    Ritchie NWM
    Microsc Microanal; 2017 Jun; 23(3):618-633. PubMed ID: 28285604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray microanalysis of a coated nonconductive specimen: Monte Carlo simulation.
    Demers H; Gauvin R
    Microsc Microanal; 2004 Dec; 10(6):776-82. PubMed ID: 19780319
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Moy A; Fournelle J
    Microsc Microanal; 2021 Apr; 27(2):266-283. PubMed ID: 33551014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PENEPMA: A Monte Carlo Program for the Simulation of X-Ray Emission in Electron Probe Microanalysis.
    Llovet X; Salvat F
    Microsc Microanal; 2017 Jun; 23(3):634-646. PubMed ID: 28502269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary Fluorescence of 3D Heterogeneous Materials Using a Hybrid Model.
    Yuan Y; Demers H; Wang X; Gauvin R
    Microsc Microanal; 2020 Jun; 26(3):484-496. PubMed ID: 32456721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency improvements of x-ray simulations in EGSnrc user-codes using bremsstrahlung cross-section enhancement (BCSE).
    Ali ES; Rogers DW
    Med Phys; 2007 Jun; 34(6):2143-54. PubMed ID: 17654917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deterministic partial differential equation model for dose calculation in electron radiotherapy.
    Duclous R; Dubroca B; Frank M
    Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo feasibility study of orthogonal bremsstrahlung beams for improved radiation therapy imaging.
    Jabbari K; Sarfehnia A; Podgorsak EB; Seuntjens JP
    Phys Med Biol; 2007 Feb; 52(4):1171-84. PubMed ID: 17264378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
    Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J
    Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beam range estimation by measuring bremsstrahlung.
    Yamaguchi M; Torikai K; Kawachi N; Shimada H; Satoh T; Nagao Y; Fujimaki S; Kokubun M; Watanabe S; Takahashi T; Arakawa K; Kamiya T; Nakano T
    Phys Med Biol; 2012 May; 57(10):2843-56. PubMed ID: 22513759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The continuum normalization method for quantification of X-ray spectra in biological microanalysis. 1. Generalized bremsstrahlung production cross-sections and analysis using standards.
    Nicholson WA; Hall TA
    J Microsc; 2000 Dec; 200(Pt 3):230-9. PubMed ID: 11106963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing Monte Carlo computer codes for simulations of electron transport in matter.
    Sídlová V; Trojek T
    Appl Radiat Isot; 2010; 68(4-5):961-4. PubMed ID: 20116266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.