These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 27188143)
1. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface]. Frolov AA; Husek D; Silchenko AV; Tintera Y; Rydlo J Fiziol Cheloveka; 2016; 42(1):5-18. PubMed ID: 27188143 [TBL] [Abstract][Full Text] [Related]
2. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders]. Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562 [TBL] [Abstract][Full Text] [Related]
3. EEG oscillatory patterns and classification of sequential compound limb motor imagery. Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435 [TBL] [Abstract][Full Text] [Related]
4. [Characterization of electrical brain activity related to hand motor imagery in healthy subjects]. Cantillo-Negrete J; Gutiérrez-Martínez J; Flores-Rodríguez TB; Cariño-Escobar RI; Elías-Viñas D Rev Invest Clin; 2014 Jul; 66 Suppl 1():S111-21. PubMed ID: 25264791 [TBL] [Abstract][Full Text] [Related]
5. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225 [TBL] [Abstract][Full Text] [Related]
6. EEG-based classification of imaginary left and right foot movements using beta rebound. Hashimoto Y; Ushiba J Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379 [TBL] [Abstract][Full Text] [Related]
7. The use of EEG modifications due to motor imagery for brain-computer interfaces. Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254 [TBL] [Abstract][Full Text] [Related]
8. Common neural correlates of real and imagined movements contributing to the performance of brain-machine interfaces. Sugata H; Hirata M; Yanagisawa T; Matsushita K; Yorifuji S; Yoshimine T Sci Rep; 2016 Apr; 6():24663. PubMed ID: 27090735 [TBL] [Abstract][Full Text] [Related]
9. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
10. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. Ofner P; Müller-Putz GR IEEE Trans Biomed Eng; 2015 Mar; 62(3):972-81. PubMed ID: 25494495 [TBL] [Abstract][Full Text] [Related]
11. [Sources of electrophysiological and foci of hemodynamic brain activity most relevant for controlling a hybrid brain–Computer interface based on classification of EEG patterns and near-infrared spectrography signals during motor imagery]. Bobrov PD; Isaev MR; Korshakov AV; Oganesyan VV; Kerechanin JV; Popodko AI; Frolov AA Fiziol Cheloveka; 2016; 42(3):12-24. PubMed ID: 29446587 [TBL] [Abstract][Full Text] [Related]
12. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related]
13. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Liu Y; Zhao Q; Zhang L Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750 [TBL] [Abstract][Full Text] [Related]
14. Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training. Enzinger C; Ropele S; Fazekas F; Loitfelder M; Gorani F; Seifert T; Reiter G; Neuper C; Pfurtscheller G; Müller-Putz G Exp Brain Res; 2008 Sep; 190(2):215-23. PubMed ID: 18592230 [TBL] [Abstract][Full Text] [Related]
15. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121 [TBL] [Abstract][Full Text] [Related]
16. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach. Müller-Putz GR; Schwarz A; Pereira J; Ofner P Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965 [TBL] [Abstract][Full Text] [Related]
17. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control. Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523 [TBL] [Abstract][Full Text] [Related]
18. Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient. Fu Y; Wang F; Li Y; Gong A; Qian Q; Su L; Zhao L Biomed Tech (Berl); 2022 Jun; 67(3):173-183. PubMed ID: 35420003 [TBL] [Abstract][Full Text] [Related]
19. [Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface]. Vasilyev AN; Liburkina SP; Kaplan AY Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 May; 66(3):302-312. PubMed ID: 30695412 [TBL] [Abstract][Full Text] [Related]
20. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals. Kim JH; Bießmann F; Lee SW IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]