These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27188786)

  • 1. A reference library of peripheral blood mononuclear cells for SWATH-MS analysis.
    Silva C; Santa C; Anjo SI; Manadas B
    Proteomics Clin Appl; 2016 Jul; 10(7):760-4. PubMed ID: 27188786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Proteome Analysis of Peripheral Blood Mononuclear Cells (PBMCs) to Identify Candidate Biomarkers of Pancreatic Cancer.
    Li H; Mao Y; Xiong Y; Zhao HH; Shen F; Gao X; Yang P; Liu X; Fu D
    Cancer Genomics Proteomics; 2019; 16(1):81-89. PubMed ID: 30587502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method.
    Narasimhan M; Kannan S; Chawade A; Bhattacharjee A; Govekar R
    J Transl Med; 2019 May; 17(1):184. PubMed ID: 31151397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications.
    Anjo SI; Santa C; Manadas B
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 28127880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms.
    Röst HL; Aebersold R; Schubert OT
    Methods Mol Biol; 2017; 1550():289-307. PubMed ID: 28188537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWATH enables precise label-free quantification on proteome scale.
    Huang Q; Yang L; Luo J; Guo L; Wang Z; Yang X; Jin W; Fang Y; Ye J; Shan B; Zhang Y
    Proteomics; 2015 Apr; 15(7):1215-23. PubMed ID: 25560523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS.
    Liu Y; Hüttenhain R; Surinova S; Gillet LC; Mouritsen J; Brunner R; Navarro P; Aebersold R
    Proteomics; 2013 Apr; 13(8):1247-56. PubMed ID: 23322582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human peripheral blood mononuclear cells: A review of recent proteomic applications.
    Alexovič M; Lindner JR; Bober P; Longuespée R; Sabo J; Davalieva K
    Proteomics; 2022 Aug; 22(15-16):e2200026. PubMed ID: 35348286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a Recombinant Biomarker Protein DDA Library Increases DIA Coverage of Low Abundance Plasma Proteins.
    Ahn SB; Kamath KS; Mohamedali A; Noor Z; Wu JX; Pascovici D; Adhikari S; Cheruku HR; Guillemin GJ; McKay MJ; Nice EC; Baker MS
    J Proteome Res; 2021 May; 20(5):2374-2389. PubMed ID: 33752330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction.
    Ortea I; Rodríguez-Ariza A; Chicano-Gálvez E; Arenas Vacas MS; Jurado Gámez B
    J Proteomics; 2016 Apr; 138():106-14. PubMed ID: 26917472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR).
    Cheung JK; Li KK; Zhou L; To CH; Lam TC
    Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Building Mass Spectrometry Spectral Libraries of Human Cancer Cell Lines].
    Faktor J; Bouchal P
    Klin Onkol; 2016; 29 Suppl 4(Suppl 4):54-58. PubMed ID: 27846721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry.
    Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W
    J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current trends in quantitative proteomics - an update.
    Li H; Han J; Pan J; Liu T; Parker CE; Borchers CH
    J Mass Spectrom; 2017 May; 52(5):319-341. PubMed ID: 28418607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the SWATH-MS-workflow for label-free proteomics.
    Simbürger JMB; Dettmer K; Oefner PJ; Reinders J
    J Proteomics; 2016 Aug; 145():137-140. PubMed ID: 27107778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells.
    Haudek-Prinz VJ; Klepeisz P; Slany A; Griss J; Meshcheryakova A; Paulitschke V; Mitulovic G; Stöckl J; Gerner C
    J Proteomics; 2012 Dec; 76 Spec No.(5):150-62. PubMed ID: 22813876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing SWATH-MS as a tool for proteome level quantification in a nonmodel fish.
    Monroe AA; Zhang H; Schunter C; Ravasi T
    Mol Ecol Resour; 2020 Nov; 20(6):1647-1657. PubMed ID: 32687632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric protein maps for biomarker discovery and clinical research.
    Liu Y; Hüttenhain R; Collins B; Aebersold R
    Expert Rev Mol Diagn; 2013 Nov; 13(8):811-25. PubMed ID: 24138574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry.
    Ku X; Yan W
    Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.