These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 27188971)
41. Stoichiometric Analysis and Production of Bacterial Cellulose by Gluconacetobacter liquefaciens using Borassus flabellifer L. Jaggery. Senthilnathan S; Rahman SSA; Pasupathi S; Venkatachalam P; Karuppiah S Appl Biochem Biotechnol; 2022 Aug; 194(8):3645-3667. PubMed ID: 35482222 [TBL] [Abstract][Full Text] [Related]
42. Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Chao Y; Ishida T; Sugano Y; Shoda M Biotechnol Bioeng; 2000 May; 68(3):345-52. PubMed ID: 10745203 [TBL] [Abstract][Full Text] [Related]
43. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues. Al-Abdallah W; Dahman Y Bioprocess Biosyst Eng; 2013 Nov; 36(11):1735-43. PubMed ID: 23559435 [TBL] [Abstract][Full Text] [Related]
44. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Ding R; Hu S; Xu M; Hu Q; Jiang S; Xu K; Tremblay PL; Zhang T Carbohydr Polym; 2021 Jan; 252():117137. PubMed ID: 33183596 [TBL] [Abstract][Full Text] [Related]
45. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Keshk S; Sameshima K Appl Microbiol Biotechnol; 2006 Sep; 72(2):291-6. PubMed ID: 16450110 [TBL] [Abstract][Full Text] [Related]
46. Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy. Zhang K Appl Microbiol Biotechnol; 2013 May; 97(10):4353-9. PubMed ID: 23417343 [TBL] [Abstract][Full Text] [Related]
47. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Wu JM; Liu RH Carbohydr Polym; 2012 Sep; 90(1):116-21. PubMed ID: 24751018 [TBL] [Abstract][Full Text] [Related]
48. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. Mangayil R; Rajala S; Pammo A; Sarlin E; Luo J; Santala V; Karp M; Tuukkanen S ACS Appl Mater Interfaces; 2017 Jun; 9(22):19048-19056. PubMed ID: 28520408 [TBL] [Abstract][Full Text] [Related]
49. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Lu T; Gao H; Liao B; Wu J; Zhang W; Huang J; Liu M; Huang J; Chang Z; Jin M; Yi Z; Jiang D Carbohydr Polym; 2020 Mar; 232():115788. PubMed ID: 31952596 [TBL] [Abstract][Full Text] [Related]
50. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel. Winkelhausen E; Velickova E; Amartey SA; Kuzmanova S Appl Biochem Biotechnol; 2010 Dec; 162(8):2214-20. PubMed ID: 20512428 [TBL] [Abstract][Full Text] [Related]
51. Effects of acetan on production of bacterial cellulose by Acetobacter xylinum. Ishida T; Sugano Y; Nakai T; Shoda M Biosci Biotechnol Biochem; 2002 Aug; 66(8):1677-81. PubMed ID: 12353627 [TBL] [Abstract][Full Text] [Related]
52. Production of bacterial cellulose using different carbon sources and culture media. Mohammadkazemi F; Azin M; Ashori A Carbohydr Polym; 2015 Mar; 117():518-523. PubMed ID: 25498666 [TBL] [Abstract][Full Text] [Related]
53. Role of water-soluble polysaccharides in bacterial cellulose production. Ishida T; Mitarai M; Sugano Y; Shoda M Biotechnol Bioeng; 2003 Aug; 83(4):474-8. PubMed ID: 12800141 [TBL] [Abstract][Full Text] [Related]
54. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Noro N; Sugano Y; Shoda M Appl Microbiol Biotechnol; 2004 Apr; 64(2):199-205. PubMed ID: 14564490 [TBL] [Abstract][Full Text] [Related]
55. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116 [TBL] [Abstract][Full Text] [Related]
56. Increased production of bacterial cellulose as starting point for scaled-up applications. Gullo M; Sola A; Zanichelli G; Montorsi M; Messori M; Giudici P Appl Microbiol Biotechnol; 2017 Nov; 101(22):8115-8127. PubMed ID: 28965208 [TBL] [Abstract][Full Text] [Related]
57. A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources. Yang F; Cao Z; Li C; Chen L; Wu G; Zhou X; Hong FF N Biotechnol; 2023 Sep; 76():72-81. PubMed ID: 37182820 [TBL] [Abstract][Full Text] [Related]
58. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Lee KY; Buldum G; Mantalaris A; Bismarck A Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676 [TBL] [Abstract][Full Text] [Related]
59. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Ruka DR; Simon GP; Dean KM Carbohydr Polym; 2012 Jun; 89(2):613-22. PubMed ID: 24750766 [TBL] [Abstract][Full Text] [Related]
60. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Cheng KC; Catchmark JM; Demirci A Biomacromolecules; 2011 Mar; 12(3):730-6. PubMed ID: 21250667 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]