BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27189439)

  • 1. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish.
    Desvignes T; Detrich HW; Postlethwait JH
    Mar Genomics; 2016 Dec; 30():27-34. PubMed ID: 27189439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish.
    Xu Q; Cai C; Hu X; Liu Y; Guo Y; Hu P; Chen Z; Peng S; Zhang D; Jiang S; Wu Z; Chan J; Chen L
    Mol Ecol; 2015 Sep; 24(18):4664-78. PubMed ID: 26268413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Draft genome assembly and transcriptome data of the icefish
    Bargelloni L; Babbucci M; Ferraresso S; Papetti C; Vitulo N; Carraro R; Pauletto M; Santovito G; Lucassen M; Mark FC; Zane L; Patarnello T
    Commun Biol; 2019; 2():443. PubMed ID: 31815198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids.
    Scudiero R; Trinchella F; Riggio M; Parisi E
    Gene; 2007 Aug; 397(1-2):1-11. PubMed ID: 17570620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress.
    Giordano D; Corti P; Coppola D; Altomonte G; Xue J; Russo R; di Prisco G; Verde C
    Mar Genomics; 2021 Jun; 57():100831. PubMed ID: 33250437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes.
    di Prisco G; Cocca E; Parker S; Detrich H
    Gene; 2002 Aug; 295(2):185-91. PubMed ID: 12354652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
    Kuhn DE; O'Brien KM; Crockett EL
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antarctic blackfin icefish genome reveals adaptations to extreme environments.
    Kim BM; Amores A; Kang S; Ahn DH; Kim JH; Kim IC; Lee JH; Lee SG; Lee H; Lee J; Kim HW; Desvignes T; Batzel P; Sydes J; Titus T; Wilson CA; Catchen JM; Warren WC; Schartl M; Detrich HW; Postlethwait JH; Park H
    Nat Ecol Evol; 2019 Mar; 3(3):469-478. PubMed ID: 30804520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW; Amemiya CT
    Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production.
    Ebanks B; Katyal G; Lucassen M; Papetti C; Chakrabarti L
    Am J Physiol Regul Integr Comp Physiol; 2022 Aug; 323(2):R181-R192. PubMed ID: 35639858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific immunity proteomic profile of the skin mucus of Antarctic fish Chionodraco hamatus and Notothenia coriiceps.
    Huang S; Jia R; Hu R; Zhai W; Jiang S; Li W; Wang F; Xu Q
    J Fish Biol; 2021 Dec; 99(6):1998-2007. PubMed ID: 34520045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chromosome-level reference genome of the Antarctic blackfin icefish Chaenocephalus aceratus.
    Lee SJ; Kim J; Choi EK; Jo E; Cho M; Kim JH; Park H
    Sci Data; 2023 Sep; 10(1):657. PubMed ID: 37752129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of splenic contraction persists as a vestigial trait in white-blooded Antarctic fishes.
    Joyce W; Axelsson M
    J Fish Biol; 2021 Jan; 98(1):287-291. PubMed ID: 33090461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes.
    Cocca E; Ratnayake-Lecamwasam M; Parker SK; Camardella L; Ciaramella M; di Prisco G; Detrich HW
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1817-21. PubMed ID: 7892183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish.
    Yergeau DA; Cornell CN; Parker SK; Zhou Y; Detrich HW
    Dev Biol; 2005 Jul; 283(1):97-112. PubMed ID: 15890331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of alpha- and beta-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization.
    Pisano E; Cocca E; Mazzei F; Ghigliotti L; di Prisco G; Detrich HW; Ozouf-Costaz C
    Chromosome Res; 2003; 11(6):633-40. PubMed ID: 14516071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes.
    O'Brien KM; Skilbeck C; Sidell BD; Egginton S
    J Exp Biol; 2003 Jan; 206(Pt 2):411-21. PubMed ID: 12477911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis.
    Urschel MR; O'Brien KM
    J Exp Biol; 2008 Aug; 211(Pt 16):2638-46. PubMed ID: 18689417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and physiological study of the cardiac NOS/NO system in the Antarctic (Hb-/Mb-) icefish Chaenocephalus aceratus and in the red-blooded Trematomus bernacchii.
    Garofalo F; Amelio D; Cerra MC; Tota B; Sidell BD; Pellegrino D
    Nitric Oxide; 2009 Mar; 20(2):69-78. PubMed ID: 19027084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription.
    Small DJ; Moylan T; Vayda ME; Sidell BD
    J Exp Biol; 2003 Jan; 206(Pt 1):131-9. PubMed ID: 12456703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.