BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27189479)

  • 1. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118.
    Salustiano EJ; Dumas ML; Silva-Santos GG; Netto CD; Costa PR; Rumjanek VM
    Invest New Drugs; 2016 Oct; 34(5):541-51. PubMed ID: 27189479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.
    Riça IG; Netto CD; Rennó MN; Abreu PA; Costa PRR; da Silva AJM; Cavalcante MCM
    Bioorg Med Chem; 2016 Sep; 24(18):4415-4423. PubMed ID: 27492193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Biological Evaluation of Pterocarpanquinones and Carbapterocarpans with Anti-tumor Activity against MDR Leukemias.
    Rumjanek VM; Maia RC; Salustiano EJ; Costa PRR
    Anticancer Agents Med Chem; 2019; 19(1):29-37. PubMed ID: 29692266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress.
    Martino T; Kudrolli TA; Kumar B; Salviano I; Mencalha A; Coelho MGP; Justo G; Costa PRR; Sabino KCC; Lupold SE
    Prostate; 2018 Feb; 78(2):140-151. PubMed ID: 29105806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression.
    Martino T; Magalhães FC; Justo GA; Coelho MG; Netto CD; Costa PR; Sabino KC
    Bioorg Med Chem; 2014 Jun; 22(12):3115-22. PubMed ID: 24794748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells.
    Maia RC; Vasconcelos FC; de Sá Bacelar T; Salustiano EJ; da Silva LF; Pereira DL; Moellman-Coelho A; Netto CD; da Silva AJ; Rumjanek VM; Costa PR
    Invest New Drugs; 2011 Dec; 29(6):1143-55. PubMed ID: 20499132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radix Astragali and Tanshinone Help Carboplatin Inhibit B16 Tumor Cell Growth.
    Wu J; Xu H; Zhang L; Zhang X
    Technol Cancer Res Treat; 2016 Aug; 15(4):583-8. PubMed ID: 26041399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model.
    Ishii-Osai Y; Yamashita T; Tamura Y; Sato N; Ito A; Honda H; Wakamatsu K; Ito S; Nakayama E; Okura M; Jimbow K
    J Dermatol Sci; 2012 Jul; 67(1):51-60. PubMed ID: 22622238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pterocarpanquinone LQB 118 induces apoptosis in tumor cells through the intrinsic pathway and the endoplasmic reticulum stress pathway.
    de Sá Bacelar T; da Silva AJ; Costa PR; Rumjanek VM
    Anticancer Drugs; 2013 Jan; 24(1):73-83. PubMed ID: 22960938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells.
    Attia WY; Gabry MS; El-Shaikh KA; Othman GA
    Egypt J Immunol; 2008; 15(2):169-83. PubMed ID: 20306700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical analysis and antitumour effect of Abrus precatorius agglutinin derived peptides in Ehrlich's ascites and B16 melanoma mice tumour model.
    Behera B; Devi KS; Mishra D; Maiti S; Maiti TK
    Environ Toxicol Pharmacol; 2014 Jul; 38(1):288-96. PubMed ID: 25000506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitumor and immune-modulatory efficacy of dual-treatment based on levamisole and/or taurine in Ehrlich ascites carcinoma-bearing mice.
    Ibrahim HM; Abdel Ghaffar FR; El-Elaimy IA; Gouida MS; Abd El Latif HM
    Biomed Pharmacother; 2018 Oct; 106():43-49. PubMed ID: 29945116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neem (Azadirachta indica) leaf mediated immune activation causes prophylactic growth inhibition of murine Ehrlich carcinoma and B16 melanoma.
    Baral R; Chattopadhyay U
    Int Immunopharmacol; 2004 Mar; 4(3):355-66. PubMed ID: 15037213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma.
    Rajasekar S; Park DJ; Park C; Park S; Park YH; Kim ST; Choi YH; Choi YW
    J Ethnopharmacol; 2012 Nov; 144(2):335-45. PubMed ID: 22995444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pterocarpanquinone LQB 118 inhibits inflammation triggered by zymosan in vivo and in vitro.
    Lima ÉA; Cavalcante-Silva LHA; Carvalho DCM; Netto CD; Costa PRR; Rodrigues-Mascarenhas S
    Int Immunopharmacol; 2020 Jun; 83():106399. PubMed ID: 32193104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of HDAC inhibitor MS-275 and IL-2 increased anti-tumor effect in a melanoma model via activated cytotoxic T cells.
    Kato Y; Yoshino I; Egusa C; Maeda T; Pili R; Tsuboi R
    J Dermatol Sci; 2014 Aug; 75(2):140-7. PubMed ID: 24866536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model.
    Gomez-Cadena A; Urueña C; Prieto K; Martinez-Usatorre A; Donda A; Barreto A; Romero P; Fiorentino S
    Cell Death Dis; 2016 Jun; 7(6):e2243. PubMed ID: 27253407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles.
    Moon EY; Yi GH; Kang JS; Lim JS; Kim HM; Pyo S
    J Immunotoxicol; 2011; 8(1):56-67. PubMed ID: 21288165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination therapy with TiO
    Adibzadeh R; Golhin MS; Sari S; Mohammadpour H; Kheirbakhsh R; Muhammadnejad A; Amanpour S; Moosavi MA; Rahmati M
    Clin Transl Oncol; 2021 Apr; 23(4):738-749. PubMed ID: 32734535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunopharmacological studies of low molecular weight polysaccharide from Angelica sinensis.
    Choy YM; Leung KN; Cho CS; Wong CK; Pang PK
    Am J Chin Med; 1994; 22(2):137-45. PubMed ID: 7992813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.