BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 27189564)

  • 21. Should evolutionary geneticists worry about higher-order epistasis?
    Weinreich DM; Lan Y; Wylie CS; Heckendorn RB
    Curr Opin Genet Dev; 2013 Dec; 23(6):700-7. PubMed ID: 24290990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributions of epistasis in microbes fit predictions from a fitness landscape model.
    Martin G; Elena SF; Lenormand T
    Nat Genet; 2007 Apr; 39(4):555-60. PubMed ID: 17369829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene Conversion Facilitates Adaptive Evolution on Rugged Fitness Landscapes.
    Bittihn P; Tsimring LS
    Genetics; 2017 Dec; 207(4):1577-1589. PubMed ID: 28978673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
    Steinberg B; Ostermeier M
    J Mol Biol; 2016 Jul; 428(13):2730-43. PubMed ID: 27173379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of robustness on selection of a mutation-rate regulating gene.
    Ancliff M; Park JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031925. PubMed ID: 22060421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The distribution of epistasis on simple fitness landscapes.
    Fraïsse C; Welch JJ
    Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
    Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G
    J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selecting among three basic fitness landscape models: Additive, multiplicative and stickbreaking.
    Miller CR; Van Leuven JT; Wichman HA; Joyce P
    Theor Popul Biol; 2018 Jul; 122():97-109. PubMed ID: 29198859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of weak clonal interference on average fitness trajectories in the presence of macroscopic epistasis.
    Guo Y; Amir A
    Genetics; 2022 Apr; 220(4):. PubMed ID: 35171996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rank ordering of genotypic fitness values predicts genetic constraint on natural selection on landscapes lacking sign epistasis.
    Weinreich DM
    Genetics; 2005 Nov; 171(3):1397-405. PubMed ID: 16079241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary advantage of small populations on complex fitness landscapes.
    Jain K; Krug J; Park SC
    Evolution; 2011 Jul; 65(7):1945-55. PubMed ID: 21729050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes.
    Clune J; Misevic D; Ofria C; Lenski RE; Elena SF; Sanjuán R
    PLoS Comput Biol; 2008 Sep; 4(9):e1000187. PubMed ID: 18818724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid adaptation of recombining populations on tunable fitness landscapes.
    Li J; Amado A; Bank C
    Mol Ecol; 2024 May; 33(10):e16900. PubMed ID: 36855836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental fitness landscapes to understand the molecular evolution of RNA-based life.
    Athavale SS; Spicer B; Chen IA
    Curr Opin Chem Biol; 2014 Oct; 22():35-9. PubMed ID: 25270912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational Complexity as an Ultimate Constraint on Evolution.
    Kaznatcheev A
    Genetics; 2019 May; 212(1):245-265. PubMed ID: 30833289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quasi-species evolution maximizes genotypic reproductive value (not fitness or flatness).
    Smerlak M
    J Theor Biol; 2021 Aug; 522():110699. PubMed ID: 33794289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations.
    Cervera H; Lalić J; Elena SF
    Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27534955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution in alternating environments with tunable interlandscape correlations.
    Maltas J; McNally DM; Wood KB
    Evolution; 2021 Jan; 75(1):10-24. PubMed ID: 33206376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of population size on early adaptation in rugged fitness landscapes.
    Servajean R; Bitbol AF
    Philos Trans R Soc Lond B Biol Sci; 2023 May; 378(1877):20220045. PubMed ID: 37004726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypic effect of mutations in evolving populations of RNA molecules.
    Stich M; Lázaro E; Manrubia SC
    BMC Evol Biol; 2010 Feb; 10():46. PubMed ID: 20163698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.