These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 27189696)
1. A comparison of age-related changes in axial prestretch in human carotid arteries and in human abdominal aorta. Horný L; Adámek T; Kulvajtová M Biomech Model Mechanobiol; 2017 Feb; 16(1):375-383. PubMed ID: 27189696 [TBL] [Abstract][Full Text] [Related]
2. Analysis of axial prestretch in the abdominal aorta with reference to post mortem interval and degree of atherosclerosis. Horny L; Adamek T; Kulvajtova M J Mech Behav Biomed Mater; 2014 May; 33():93-8. PubMed ID: 23676503 [TBL] [Abstract][Full Text] [Related]
3. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Horný L; Netušil M; Voňavková T Biomech Model Mechanobiol; 2014 Aug; 13(4):783-99. PubMed ID: 24136338 [TBL] [Abstract][Full Text] [Related]
4. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603 [TBL] [Abstract][Full Text] [Related]
5. Effect of axial prestretch and adipose tissue on the inflation-extension behavior of the human abdominal aorta. Voňavková T; Horný L Comput Methods Biomech Biomed Engin; 2020 Feb; 23(3):81-91. PubMed ID: 31814443 [TBL] [Abstract][Full Text] [Related]
6. Associations of arterial distensibility between carotid arteries and abdominal aorta by MR. Jiang L; Chen H; Li R; Han X; Chen Z; He L; Yuan C; Zhao X J Magn Reson Imaging; 2015 Apr; 41(4):1138-42. PubMed ID: 24700507 [TBL] [Abstract][Full Text] [Related]
7. A comparison of passive and active wall mechanics between elastic and muscular arteries of juvenile and adult rats. Feng Y; Wang X; Zhao Y; Li L; Niu P; Huang Y; Han Y; Tan W; Huo Y J Biomech; 2021 Sep; 126():110642. PubMed ID: 34325121 [TBL] [Abstract][Full Text] [Related]
8. Usefulness of carotid intima-media thickness measurement as an indicator of generalized atherosclerosis: findings from autopsy analysis. Iwakiri T; Yano Y; Sato Y; Hatakeyama K; Marutsuka K; Fujimoto S; Kitamura K; Kario K; Asada Y Atherosclerosis; 2012 Dec; 225(2):359-62. PubMed ID: 23092826 [TBL] [Abstract][Full Text] [Related]
9. An in vivo parameter identification method for arteries: numerical validation for the human abdominal aorta. Gade JL; Stålhand J; Thore CJ Comput Methods Biomech Biomed Engin; 2019 Mar; 22(4):426-441. PubMed ID: 30806081 [TBL] [Abstract][Full Text] [Related]
10. Differences in mechanical properties of the common carotid artery and abdominal aorta in healthy males. Länne T; Hansen F; Mangell P; Sonesson B J Vasc Surg; 1994 Aug; 20(2):218-25. PubMed ID: 8040945 [TBL] [Abstract][Full Text] [Related]
11. Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. Horny L; Adamek T; Gultova E; Zitny R; Vesely J; Chlup H; Konvickova S J Mech Behav Biomed Mater; 2011 Nov; 4(8):2128-32. PubMed ID: 22098912 [TBL] [Abstract][Full Text] [Related]
12. Stiffness of systemic arteries in appropriate- and small-for-gestational-age newborn infants. Mori A; Uchida N; Inomo A; Izumi S Pediatrics; 2006 Sep; 118(3):1035-41. PubMed ID: 16950995 [TBL] [Abstract][Full Text] [Related]
13. Age-related changes of elements in thoracic and abdominal aortas and coronary, common carotid, pulmonary, splenic, common iliac, and uterine arteries and relationships in elements among their arteries. Ongkana N; Tohno S; Payo IM; Azuma C; Moriwake Y; Minami T; Tohno Y Biol Trace Elem Res; 2007; 117(1-3):23-38. PubMed ID: 17873390 [TBL] [Abstract][Full Text] [Related]
14. Aneurysmal and occlusive atherosclerosis of the human abdominal aorta. Xu C; Zarins CK; Glagov S J Vasc Surg; 2001 Jan; 33(1):91-6. PubMed ID: 11137928 [TBL] [Abstract][Full Text] [Related]
15. [Surgery of abdominal aorta with horseshoe kidney]. Lotina SL; Davidović LB; Kostić DM; Velimirović DV; Petrović PLj; Perisić-Savić MV; KovacevićN S Srp Arh Celok Lek; 1997; 125(1-2):36-44. PubMed ID: 17974353 [TBL] [Abstract][Full Text] [Related]
16. [Chronic blockade of angiotensin II type 1 receptor cannot completely prevent structural adaptation in vessels of simulated weightless rats]. Gao F; Zhang LF; Huang WQ; Sun L Sheng Li Xue Bao; 2007 Dec; 59(6):821-30. PubMed ID: 18157477 [TBL] [Abstract][Full Text] [Related]
17. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions. Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846 [TBL] [Abstract][Full Text] [Related]
18. The value of true-FISP sequence added to conventional gadolinium-enhanced MRA of abdominal aorta and its major branches. Iozzelli A; D'Orta G; Aliprandi A; Secchi F; Di Leo G; Sardanelli F Eur J Radiol; 2009 Dec; 72(3):489-93. PubMed ID: 18926654 [TBL] [Abstract][Full Text] [Related]
19. [Calculation of the linear blood flow velocity in the aorta and its branches]. Orlov AG Kardiologiia; 1967 Aug; 7(8):112-5. PubMed ID: 4891754 [No Abstract] [Full Text] [Related]
20. Modeling hemodynamic forces in carotid artery based on local geometric features. Chen Y; Canton G; Kerwin WS; Chiu B Med Biol Eng Comput; 2016 Sep; 54(9):1437-52. PubMed ID: 26578532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]